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PRIMA: Subscriber-Driven Interference
Mitigation for Cloud Services

Joydeep Mukherjee and Diwakar Krishnamurthy

Abstract—Network services, e.g., video streaming services, are
increasingly being deployed on public cloud platforms. Such
services often employ horizontal scaling where a group of
resource instances, e.g., virtual machines (VMs), handle incoming
workload. The response time of such services is often affected by
interference, i.e., contention among resource instances belonging
to multiple cloud subscribers for shared cloud resources. Most
commercial cloud platforms do not support built-in mechanisms
to detect interference and mitigate its impact. Consequently, sub-
scribers of such platforms, i.e., network service providers, need
to deploy their own mechanisms to ensure a specified end user
response time target is continuously met even in the face of
fluctuations in workload and interference. This paper describes
PRIMA, our implementation of such a mechanism. PRIMA uses
automated and controlled performance tests to build models that
capture the joint impact of workload and interference on the
response time of each resource instance employed by a service.
It adapts the system to changing workload and interference con-
ditions by using these models at runtime to control the number
of instances in the system and the distribution of load among
these instances. Unlike existing subscriber-oriented interference
mitigation techniques in literature, PRIMA guarantees that a
subscriber-specified response time threshold is satisfied at every
resource instance assigned to a service. Furthermore, in contrast
to these approaches PRIMA can help a subscriber avoid using
more instances than necessary by automatically selecting at run-
time the least number of instances required for handling the
observed workload and interference. We experimentally validate
the effectiveness of PRIMA in both private and public cloud
environments. Results show that PRIMA outperforms competing
approaches proposed by us and others, including those that are
commonly used in practice. They also reveal that PRIMA can
automatically calibrate its models at runtime to account for any
model prediction errors.

Index Terms—Software performance, cloud computing, quality
of service, predictive modeling.

I. INTRODUCTION

PUBLIC cloud providers often implement resource virtual-
ization in their data centers by running multiple resource

instances, e.g., virtual machines (VMs), on a shared physi-
cal machine (PM). Such virtualization can cause performance
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interference when multiple instances belonging to different
cloud subscribers compete with one another for a shared
PM resource, e.g., the processor or network bandwidth [1],
[2], [3], [4], [5], [6]. Interference can be especially problem-
atic for interactive network services. Specifically, the occur-
rence of interference can be unpredictable. When it happens,
interference can manifest itself as higher response times, i.e.,
poor Quality of Service (QoS), leading to frustration for end
users of such services. For example, users of a video stream-
ing application hosted on the cloud can experience unexpected
drops in video quality due to sudden network contention on
PMs [7].

Unfortunately, commercial cloud platforms typically do
not support built-in mechanisms to continuously detect and
mitigate the adverse impact of interference. Consequently,
subscribers of such platforms need to deploy their own mech-
anisms to ensure a specified end user response time target is
continuously met by each of their instances even in the pres-
ence of fluctuations in interference as well as service workload.
However, developing such mechanisms is challenging since
cloud subscribers typically do not have access to data pertain-
ing to how the physical machine âs hardware is used by VMs
hosted on that machine. Thus, a subscriber cannot directly
determine the extent of interference suffered by their instances
from instances belonging to other subscribers.

Due to the challenges in detecting interference and quantify-
ing its impact on performance, subscribers often employ sim-
plistic interference-agnostic performance management tech-
niques that can suffer from many drawbacks. Specifically,
performance problems are typically mitigated using techniques
such as load balancing and auto scaling. A cloud subscriber
can employ load balancing to distribute incoming requests
between a set of instances available to the subscriber, collec-
tively called the load balancing group (LBG). Load balancing
in public cloud platforms works in conjunction with tech-
niques such as auto scaling that can expand or shrink the LBG
as required. Common load balancing algorithms supported
by commercial cloud platforms, e.g., round robin and least
connections [8], do not explicitly take into account how indi-
vidual instances within the LBG are impacted by interference
at any give point in time. Consequently, the incoming work-
load can be distributed in an ineffective manner leading to
performance degradation. For example, consider a system with
2 identical instances where one instance is currently suffering
from interference while the other is not. A round robin policy
can incorrectly distribute equal workload to these instances,
leading to poor performance in the instance with interference.
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This paper develops an integrated load balancing and
auto scaling technique to address such limitations of
interference-agnostic techniques. A key challenge in realizing
effective interference-aware load balancing and auto scaling
strategies is determining the amount of workload an instance
can handle given the current extent of interference at that
instance and the response time target. As we show later in
Section VI-A, the interplay between workload, interference,
and response time is typically complex. In particular, the extent
of response time degradation accompanying an increase in
workload assigned to an instance can depend on the extent
of interference at the instance. For example, response time
is likely to be more sensitive to an increase in workload
when interference, i.e., contention for the shared resource,
is severe. Similarly, the impact of increased interference on
response time is likely to be more dramatic when the instance
is experiencing heavier workloads. These observations moti-
vate the need for an approach where models that capture such
non-linear and interacting relationships are used to estimate
the amount of workload an instance can handle. Such esti-
mates can then be used to drive load balancing and auto
scaling decisions. In this paper we propose such a model-based
load balancing and auto scaling approach called performance
interference management approach (PRIMA).

PRIMA is an interference-aware integrated load balancing
and auto scaling technique. It exploits data-driven models
derived by deploying a subscriber-oriented interference esti-
mation system developed in previous work [3]. This system,
referred to as the probe, reports a metric called the Severity
Factor (SF) for an instance that represents the severity of
response time degradation experienced by that instance due
to interference. First, we build a response time model that
can predict the mean response time of an instance given the
workload assigned to the instance and its SF value. We also
build an interference model that can estimate how the SF value
at any given instance changes as a function of the instance’s
current SF value and the workload assigned to that instance.
Next, we implement a runtime PRIMA controller that iterates
between these two models to calculate the split of incoming
traffic between the current instances in the LBG such that a
subscriber-specified mean response time threshold is satisfied
at each instance. If the current instances in the LBG are insuffi-
cient for accommodating the system workload at their present
interference levels, PRIMA can use the models to scale out.
Similarly, PRIMA can scale in when instances are not needed.

While others have proposed subscriber-driven interference
mitigation systems [4], [9], our work makes several novel
contributions. First, unlike these existing solutions PRIMA
guarantees that a subscriber-specified response time thresh-
old is satisfied by every instance in an LBG. Second, the
existing approaches do not focus on automatically expand-
ing and shrinking the LBG in response to fluctuations
in workload and interference. In contrast, PRIMA ensures
that a subscriber will avoid unnecessary expenses by auto-
matically determining at runtime the minimum number of
instances needed to achieve the response time target given
the observed workload and interference conditions. Finally,
PRIMA does not require monitoring of hardware coun-
ters [10] or service response times [11], which can incur a

prohibitive overhead in heavy load and heavy interference
scenarios [12], [13].

Using a realistic video streaming service, we validate the
effectiveness of PRIMA in our private cloud as well as in the
public Amazon Web Service (AWS) Elastic Compute Cloud
(EC2). Experimental results demonstrate that PRIMA outper-
forms load balancing policies commonly supported by public
cloud platforms. These results also show that PRIMA provides
better performance than competing techniques we developed
that do not use models but rather rely solely on monitoring the
interference and response time at the instances. Overall, these
results indicate that PRIMA is agile in responding to fluctua-
tions in both workload and interference. Specifically, we show
that the PRIMA models work dynamically at runtime to ensure
that the each instance accepts only as much workload as is
possible given the interference it is experiencing while satis-
fying the response time threshold. We also show that PRIMA
can expand and shrink the LBG optimally. Finally, we also
show that PRIMA is robust in that its models can be calibrated
automatically at runtime to handle any prediction errors.

This paper extends our earlier short conference publica-
tion [14] as follows. Section VI-C provides an experimental
comparison of PRIMA with load balancing policies typically
supported by public cloud platforms. In the same section,
we also compare PRIMA with interference-aware policies
we developed that do not require the response time and
interference models. In Section VI-D, we present new exper-
iments that characterize the behaviour of PRIMA when the
system’s workload characteristics, e.g., request arrival pattern,
differ from those used for building its underlying models.
Additionally, we develop and evaluate in Section IV a tech-
nique to calibrate the PRIMA models at runtime to improve
their predictive accuracy.

II. RELATED WORK

Several past studies have indicated the presence of
performance interference in commercial public cloud
platforms [7], [15]. Previous studies have devised
techniques that providers of public cloud infrastruc-
ture can exploit to detect and mitigate the impact of
interference [10], [11], [16], [17], [18]. For example,
Shen et al. propose a prediction driven elastic resource
scaling system called CloudScale which works on top of the
Xen virtualization platform [18]. CloudScale continuously
monitors resource usage metrics such as CPU, memory and
I/O utilization of each guest VM from the host PMs and uses
them as input to an online resource demand prediction model
to drive resource scaling decisions to maintain application
service level objectives. Ananthanarayanan et al. propose a
similar provider-driven interference mitigation approach for
data analytics applications [17]. Their approach requires the
provider to have full access and control over all tasks running
on PMs within a data center to mitigate the deleterious impact
of long running tasks on the performance of short, interactive
tasks. Subscribers cannot implement such techniques since
they do not have access to PM-level metrics, e.g., last
level cache misses at a PM’s processor, and control over
applications run by other subscribers on the cloud platform.
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In general, provider-driven techniques require access to
PM-level metrics and control over applications run by other
subscribers on the cloud platform. This motivates the need for
cloud subscriber-driven interference mitigation approaches.

Many studies have proposed subscriber-driven load bal-
ancing and auto scaling strategies that allow an applica-
tion to continuously achieve operator specified performance
targets in spite of workload fluctuations [19], [20]. For
example, Ren et al. propose a weighted least connections algo-
rithm to distribute incoming workload among cloud resource
instances [19]. Lakew et al. propose a mechanism called
SmallScale that can scale vertically to provision virtual cores
to VMs and clone requests to achieve the target tail latency
at a minimum provisioning cost in the face of workload fluc-
tuations [21]. Similar studies [22], [23] have also considered
horizontal scaling as a mechanism to meet QoS requirements
under workload fluctuations. While these techniques consider
workload fluctuations, they do not consider the impact of
interference. Our results in Section VI-C show that both work-
load fluctuations and interference need to be jointly considered
in performance management exercises.

Compared to studies proposing provider-driven solutions,
very few studies have focused on subscriber-driven solutions
for interference mitigation. Maji et al. propose an interference-
aware load balancing technique called ICE that is targeted
towards public cloud subscribers [9]. ICE limits the workload
assigned to instances suffering from interference such that the
CPU utilization of these instances is below a certain statically
set threshold. In contrast to PRIMA, ICE does not provide an
explicit mechanism for maintaining response times below a
specified target. One has to tune the CPU utilization thresholds
of individual instances by trial and error to achieve a desired
response time target. Furthermore, multiple thresholds might be
needed to deal with fluctuations in the severity of interference [4].
Finally, since it focuses only on load balancing ICE does not
support automated scale in and scale out of an LBG.

Javadi and Gandhi develop a subscriber-driven load bal-
ancing technique called DIAL that considers the impact of
interference [4]. In contrast to PRIMA, DIAL does not sup-
port automatic scale out. Consequently, while it can minimize
response time at each instance in an LBG, it cannot guarantee
that this minimum value will be below an operator-specified
threshold. Furthermore, unlike PRIMA, DIAL does not sup-
port scale in to avoid using more instances than necessary
to satisfy the desired response time target. Moreover, due to
the use of an M/M/1 model to drive load balancing decisions,
DIAL is likely to be more effective for systems with expo-
nentially distributed request inter-arrival and service times.
Finally, unlike PRIMA, the technique requires service response
times to be continuously monitored, which can introduce large
overheads when the service is busy or is experiencing heavy
interference [13], [24].

III. PRIMA

A. Overview of PRIMA

A system managed by PRIMA consists of a load balancer,
an LBG, the probe system [3] deployed on each instance in
the LBG, and the PRIMA controller. The controller determines

the number of instances in the LBG. It also controls how the
load balancer distributes incoming workload to these instances.
The LBG scaling and load balancing are controlled such
that the mean request response times are maintained below
a subscriber-specified threshold Rth in all instances while
using the least possible number of instances. Although PRIMA
can accommodate different types of workloads, we consider
network intensive workloads in this paper.

The probe system detects and quantifies interference at
an instance in the LBG over a sampling period. As we
demonstrate in our earlier work [3], the probe can detect
and quantify interference simultaneously for multiple PM
resources. However, due to our focus on network intensive
services, in this work the probe is configured to estimate
contention for a PM’s network bandwidth. The probe peri-
odically reports to the controller an SF value SFm for any
given instance m. SFm quantifies the impact of the network
interference experienced by the instance over the sampling
period.

For the same sampling period, the controller measures the
total incoming workload. Specifically, each instance m reports
to the controller its network utilization Um . Um is reported
as a percentage of the total network bandwidth available to
m. The controller aggregates the Um values reported by the
instances in the LBG to obtain the total workload U being
handled by the system.

Next, the controller uses the SFm values and U within the
data-driven models discussed in Section III-B2 to estimate the
maximum workload, i.e., network bandwidth, each instance
can handle given its current SF value such that the mean
response time target Rth is not exceeded. We refer to the
bandwidth utilization estimated in this manner for instance m
as its effective capacity Umax

m . The controller suggests a scale
out of the LBG if the total workload U exceeds the sum of
effective capacities of the existing instances. Similarly, it rec-
ommends a scale in if the aggregate of the effective capacities
exceeds U. Finally, PRIMA instructs the load balancer to dis-
tribute the incoming workload to LBG instances in proportion
to their effective capacities. Since there is sufficient capacity to
handle the incoming workload, this strategy ensures that each
instance handles just enough workload to keep its response
time equal to or below Rth . We note that due to its use of
data-driven models, PRIMA can be easily extended to sup-
port other performance metrics such as the 90th percentile tail
latency of service response times.

We note that PRIMA does not require monitoring of
instance response times, which can be expensive [13], [24].
However, one can optionally collect the measured mean
response time Rm at instance m for a short duration to cali-
brate the models used by PRIMA. We also note that PRIMA’s
load balancing and scaling decisions are based on the Um and
SFm values measured over a sampling period. As a result, the
controller has to be invoked periodically to handle fluctuations
in service workload and interference.

B. Deploying PRIMA

We describe in detail the steps involved in deploying
PRIMA. We note that all instances belonging to a subscriber’s
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LBG have the same specifications, as is typical in well known
public cloud platforms such as EC2 and Microsoft Azure.

1) Training the Probe: First, the probe system has to train
itself to detect interference for the specific kind of instance
it will be monitoring. The probe consists of a low over-
head microbenchmark application designed to compete for a
PM’s network bandwidth. The main objective during train-
ing is to characterize the performance of this application
under a no interference condition. At runtime, a deviation
of the probe microbenchmark’s performance from this no
interference performance can be used to flag interference.
Creating a no interference condition requires a dedicated
instance. The dedicated instance has the same characteristics
as the instance that needs to be monitored. However, it is exe-
cuted in isolation on a PM and hence does not suffer from
interference. Commercial cloud systems such as EC2 offer
such instances. Although such instances cost more, they are
only required for a very short duration. For example, the probe
training took only 30 minutes in all our case studies.

Performance data under no interference is obtained by
concurrently executing on the dedicated instance the probe
microbenchmark application and the network service being
managed. Specifically, the network service is subjected to a
synthetic workload. The workload intensity, e.g., the mean rate
of arrival of synthetic requests, is varied to cause a range of
network utilizations of interest. The mean execution time of
the microbenchmark Riso(Uded ) is recorded for each utiliza-
tion level Uded of the dedicated instance to construct a look
up table. To obtain a reliable measure of Riso(Uded ), multiple
tests are done so that the width of the 95% confidence interval
of Riso(Uded ) is within 5% of the sample mean. Given a ser-
vice utilization level Um for instance m, the look up table
provides Riso(Um), the execution time of the microbenchmark
at that utilization when there is no interference.

Data obtained in the training phase can be used to quantify
the severity of interference at runtime as follows. Consider a
case where the mean execution time of the probe microbench-
mark recorded at runtime at instance m under utilization Um

is RP
m(Um). If RP

m(Um) statistically exceeds Riso(Um), then
the probe infers interference. The severity factor SFm is used
to provide PRIMA an indication of the impact of interference
at instance m. SFm is calculated as shown in Eq. (1). Higher
values of SFm mean that the RP

m(Um) is significantly higher
than Riso(Um), which implies the impact of interference is
severe.

SFm =

{
RP

m (Um )−Riso(Um )
Riso(Um )

, if RP
m (Um ) > Riso(Um ) ∀m

0, otherwise.

(1)

2) Building the Models: The next step is to develop the
response time and interference models, which allow PRIMA
to consider how a change in the workload distributed to an
instance impacts that instance’s response time. Consider a
scenario where the utilization and SF of an instance m are
measured to be Um and SFm , respectively. Assume now that
PRIMA wants to explore the impact of changing the work-
load distribution such that the utilization of the instance shifts

from Um to Um + ΔUm . This new assignment changes both
the response time of the instance as well as the severity
of interference perceived by the instance. The response time
and interference models together allow PRIMA to predict the
response time R̂m and SF ˆSFm at this new utilization.

To build these models, we conduct automated tests where
controlled levels of interference are injected into an instance.
Since we need to control interference, we again employ a
dedicated instance that has the same characteristics of the
production instances managed by PRIMA. We deploy both
the service and the probe on this instance. We also execute
within the instance a microbenchmark that emulates the load
imposed by other instances competing for the PM’s network
bandwidth, i.e., the interfering load. Using the same synthetic
workloads employed in Section III-B1, we vary the network
utilization of the service Uded to cover a desired operating
region. We also vary the interfering load to mimic varying
levels of interference. We monitor the mean service response
time Rded , the SFded value from the probe, the service uti-
lization Uded , and the utilization due to the interfering load
Uint in each test.

We use data gathered from the tests and two dimensional
piece-wise linear interpolation to build the response time
model RTM. An alternative approach would have been to use
a queuing model. However, we choose a data-driven approach
since it does not require manual authoring of a model. The
model can be directly obtained from the test data. Furthermore,
as shown in Section VI-D, this approach simplifies automatic
model calibration.

As shown in Eq. (2), RTM predicts the response time R̂m

of the service at instance m as a function of the workload at
the instance, i.e., Um , and the severity of interference per-
ceived at the instance, i.e., SFm . This model can be used to
predict whether the mean response time of any given instance
is above the operator specified threshold given its current Um

and SFm values. As described next, PRIMA also uses it in
conjunction with the interference model to determine the maxi-
mum workload Umax

m that can be assigned to instance m while
still staying below Rth .

R̂m = RTM (Um ,SFm ) ∀m (2)

As shown in Eq. (3), the interference model IM helps
PRIMA ascertain in any instance m the relationship between
the total utilization of the shared resource, i.e., Utotal = Um +
Uint , and its severity factor SFm . We use one-dimensional
piece-wise linear interpolation of the test data to arrive at this
model. We note that IM is constructed as a “reversible” model.
It can be used to obtain predictions for either Utotal or SFm

if the other value is known.

Utotal = IM(SFm) ∀m (3)

PRIMA uses RTM and IM in tandem to capture the dynam-
ics between workload, interference, and response time. At
runtime, PRIMA first uses IM to estimate the utilization
Uint corresponding to the interfering load. We note that Uint

can only be estimated since it cannot be directly measured
by a cloud subscriber in a production deployment. To esti-
mate Uint , PRIMA first uses IM to obtain Utotal at the
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current measured SF value SFm . Next, it estimates Uint as
Utotal − Um where Um is the current measured utilization
within the instance.

Next, PRIMA uses both models to estimate the effective
capacity Umax

m of the instance m. Consider a scenario where
PRIMA wants to change the workload distribution such that
the service utilization changes from the current measured value
of Um to Ûm = Um + ΔUm . Since the total utilization now
changes to Ûm + Uint , PRIMA needs to estimate a new SF
value, i.e., ˆSFm , by using the reversible feature of IM. Finally,
it can input Ûm and ˆSFm into RTM to predict whether the
new workload assignment violates the response time thresh-
old. PRIMA changes ΔUm iteratively using this process till
it arrives at a utilization Umax

m where the predicted response
time is just below Rth .

3) Deploying the Controller: The dedicated instance used
for probe training and model building is now terminated and
the PRIMA controller is deployed on the production system.
We now describe the controller algorithm. The main objective
of the algorithm is to distribute the workload U in the system
among the LBG’s instances such that the response time at
each instance does not exceed Rth . The algorithm suggests
adding a new instance to the LBG only when it is unable
to distribute the incoming workload without one or more of
the existing instances exceeding Rth . Similarly, the algorithm
can also suggest removal of instances from the LBG, i.e., it
ensures the least amount of instances are used while meeting
the Rth targets.

The algorithm determines if there is enough effective capac-
ity in the system to handle the system workload. Specifically, it
takes as input the Um and SFm values for each instance m in
the LBG to calculate the total workload U. Next, the algorithm
uses the process described in Section III-B2 to determine the
effective capacity Umax

m for an instance m in the LBG. Finally,
Ûmax is calculated as the sum of the effective capacities of
all instances in the LBG.

The algorithm now considers the scenario where there is
insufficient capacity to handle the system workload without
violating Rth , i.e., when U exceeds Ûmax . PRIMA now spins
an additional instance n and obtains its SF value SFn at the
next sampling instant. The effective capacity of this instance
Umax

n is then calculated as outlined previously and added to
Ûmax to reflect the increased capacity of the LBG. The pro-
cess of spinning additional instances is continued till Ûmax

exceeds U, i.e., there are enough instances to handle the system
workload. Information about the current state of the LBG is
maintained in a list denoted as LBG. Each element contains
an instance identifier and the estimated effective capacity of
that instance.

As a final step, the algorithm determines whether the cur-
rent LBG, including any newly spun instances, can be scaled
in without violating Rth at every instance. There are several
reasons why the LBG may need to be pruned. For example, the
system might be experiencing lower interference and workload
than in the previous sampling interval. Furthermore, during the
scale out process PRIMA might have added an instance with
very low effective capacity before one with a higher effective
capacity. In this scenario, there is a chance that PRIMA can
relinquish the lower capacity instance without violating Rth .

To ensure that the minimum number of instances are used
to handle the system workload U, PRIMA first sorts LBG in
descending order of the effective capacity values. Assuming
that LBG has N instances, the algorithm selects the first K
instances in LBG whose aggregate effective capacities exceed
U. If K is less than N, then the system has excess capac-
ity. Instances corresponding to elements K + 1 and above
are marked for deletion. The load balancer weight for any
instance m in the group of K instances not marked for dele-
tion is calculated as the ratio of the effective capacity of
that instance and the sum of the effective capacities of all
K instances in the group. Since there is enough capacity in
the LBG, these weights ensure that the workload handled by
each instance does not cause violation of Rth . Information
about the instances to be deleted and the weights of the other
instances is communicated by PRIMA to the load balancer.

The controller’s behaviour can be fine tuned in a number of
ways. First, to avoid reacting to transient transgressions of Rth ,
the controller can be instructed to wait till the problem persists
over a specified number of consecutive sampling intervals. A
similar restraint can be built in for the scale in process as
well. Furthermore, it is also possible to incorporate a “factor
of safety” by allocating a specified number of extra instances
to the LBG beyond what is required to handle the system
workload U.

4) PRIMA Overheads: The overheads of PRIMA at run-
time consist of the resource consumption of the probe, the
resources expended to communicate the resource utilization
and interference measures from the instances to the controller,
and the computation required to derive the PRIMA con-
troller’s actions. The probe executes continuously within every
instance. By design [3], it consumes only a very low fraction
of the resources of the instance it is monitoring. We verify
this in Sections VI-C and VII. Since each instance executes a
probe, increasing the number of instances causes a correspond-
ing increase in the number of probes. However, the aggregate
network bandwidth consumption of the probes as a fraction of
the total bandwidth available to all instances remains the same.
We note that the overhead of executing the probe is much
smaller than those reported while monitoring metrics such as
cache misses and response times [12], [13], [24]. The overhead
related to communicating measured quantities, i.e., utiliza-
tions and SF values, is typically incurred in all load balancing
and auto scaling approaches and is not specific to PRIMA.
This overhead is likely to increase with sampling frequency.
However, we show in Sections VI-C and VII that even with
a high sampling frequency the overhead of transmitting the
network utilization and SF values is not significant in our
study. Finally, the controller uses simple interpolation using
the data-driven models to compute the load balancer weights
and determining the LBG scaling. Consequently, determining
the control actions require negligible computation as we verify
in Sections VI-C and VII.

IV. CALIBRATING THE MODELS

We propose an automated runtime calibration of the PRIMA
models to account for any model prediction errors. Prediction
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errors can occur due to mismatch between model input param-
eters during model construction and at runtime. For example,
the PRIMA models can incur prediction errors when the
incoming Web workload arrival pattern is different from that
used to construct the models. If the predicted response time
of an instance is lower than its actual response time due to
such prediction errors, PRIMA will incorrectly distribute more
workload to the instance than is necessary to maintain the
response time threshold for that instance. As a result, the
response time threshold in the LBG will not be maintained.
The proposed calibration policy addresses such cases.

The calibration process is triggered whenever the predicted
response time is within a configurable range ±δ% of the
response time threshold. This is motivated by our empirical
observations that suggest calibration is crucial only when the
predicted response time is very close to the threshold. As part
of the calibration process, PRIMA enables the collection of
actual measured response time from the network service. If
the actual response time exceeds the predicted response time,
then PRIMA infers that the effective capacity of the instance is
lower than that predicted by its models. Consequently, it esti-
mates a revised, lower prediction for the effective capacity by
using the measured response times within the models instead
of the predicted response times. We note that the calibration
process, and hence the monitoring of actual response times, is
turned off whenever the predicted response time falls outside
the ±δ% range.

We now discuss the details of the calibration policy. We use
the response time model RTM to predict the response time
of each instance in the LBG after PRIMA takes a mitigation
action. If the predicted response time of an instance m is within
±δ% of Rth , we monitor the response time Rm and utilization
Um of m for a short period of time. If Rm is seen to exceed
Rth , we plug in the measured Rm and Um into RTM to get
a revised, higher estimate of ˆSFm . We next use the revised
value of ˆSFm iteratively in RTM and IM to estimate a revised,
lower effective capacity of the instance. Once this is done for
all instances in the LBG whose predicted response times are
close within ±δ% of Rth , the revised values of the effective
capacities of these instances are used by PRIMA to recalculate
the distribution of load to the LBG instances.

V. EXPERIMENT SETUP

A. Private Cloud Setup

We use our private cloud setup to compare the gains of
PRIMA with respect to the baseline policies, study its sensi-
tivity to workload characteristics, and illustrate the calibration
process. We use the EC2 setup described later in Section V-B
to validate PRIMA on a larger setup. We limit the number of
experiments in the EC2 setup due to cost considerations.

The private cloud setup consists of a dual socket Intel Xeon
E5645 server host with 6 cores per socket. Multiple VM
instances are consolidated on this server using Kernel-based
Virtual Machine (KVM) as the virtual machine monitor. The
typical time taken to start up a VM instance in our setup is
30 seconds. The server has two 1 gigabit Network Interface
Cards (NICs). Each socket gets access to its own dedicated

NIC. Accordingly, instances pinned on the same socket share
1 Gbps network bandwidth. Each instance is configured with
1 virtual CPU (VCPU) and 1 GB of physical memory.

The Web-based network intensive service we consider is
hosted on the Apache Web server (version 2.2). Controlled
interference is injected by executing the iperf3 tool on addi-
tional Sources of Interference (SoI) VMs hosted on the same
socket executing the network service instances. The probe is
realized as an application deployed on the lighttpd (version
1.4.35) Web server. The probe Web server has a 1 MB file that
serves as its workload. The PRIMA system initiates a down-
load of this file once every sample period T = 10 seconds
from a separate load generation host. The probe’s response
time for this download are recorded and used to calculate the
SF value using Eq. (1). The probe imposes a network uti-
lization of around 5% of the maximum network bandwidth
available to an instance and causes only a modest increase
of 2% to 3% in the network service’s response time in our
tests. We note that communicating the utilization and SF val-
ues from the instances to the PRIMA controller did not incur
any significant overheads. We also verify that these overheads
do not change significantly while scaling up the system, i.e.,
using a large number of instances.

We use another host, identical to the server host, to gener-
ate synthetic workloads. The NIC ports on this load generator
host and the server host are connected via a gigabit switch,
which eliminates network bottlenecks between the hosts. The
httperf [25] workload generator is used to generate synthetic
requests from the load generator host. We follow the method-
ology proposed by Mukherjee et al. to ensure that there are
no bottlenecks in the load generator host [15]. Consequently,
response times measured by httperf reflect the performance of
the network service instances.

We use a modified version of httperf that can simultane-
ously generate workload to multiple instances in an LBG [26].
The PRIMA controller executes on the load generation host
and communicates with httperf to achieve the desired load
distribution across instances. Specifically, the controller col-
lects the utilization and SF values over the sample interval
T and predicts whether any of the instances in the LBG are
violating Rth . If so, the controller waits for an additional W
intervals to check if there are sustained violations. If there are
sustained violations, PRIMA determines the instances in the
LBG to mitigate this problem and assigns their load balancer
weights. This information is passed on to our custom load
balancer that uses httperf , which then distributes workload to
the LBG instances accordingly. For this study, we use W = 1.
We verify that PRIMA’s controller algorithm caused negligible
overheads in our experiments. We also verify that it is easy to
integrate PRIMA along with a standard load balancer such as
HAProxy in our EC2 setup.

B. EC2 Setup

As mentioned previously, we use a EC2 setup to validate
PRIMA on a larger setup. For example, the EC2 setup allows
us to consider scenarios where PRIMA suggests the addition
or deletion of more than one instance from the LBG in one
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step while responding to fluctuations in interference and load.
We configure up to 10 m4.large instances in a LBG for this
purpose. Each m4.large instance has 2 VCPU cores, 8 GB of
memory and is priced at 0.1 dollars per hour. Each VCPU core
of a m4.large instance is equivalent to a 2.4 GHz Intel Xeon
E5-2676 v3 processor. Each EC2 instance requires a maximum
of 30 seconds to start up, similar to our private cloud setup.

The network intensive service hosted on the EC2 instances
is identical to the one used in our private cloud setup. In con-
trast to our private cloud setup, EC2 does not permit control
over the location of SoI VMs. Consequently, we run the iperf3
tool directly inside an EC2 instance to generate controlled
interfering load. Using our private cloud setup, we verified
that locating the interfering load within a VM causes similar
behaviour on the response time and SF values of the network
service as executing the interfering load on external SoI VMs.
The probe Web application used in the EC2 instances is sim-
ilar to the probe described earlier in Section V-A. The probe
workload is designed to incur a network utilization of around
5% of the maximum bandwidth available to the EC2 instance
and causes a minimal increase of only 2% on the network
service’s response time.

We use up to 10 identical m4.large instances as the load gen-
erating instances. Each load generating instance hosts both the
PRIMA controller and the modified version of httperf as dis-
cussed earlier in Section V-A. The PRIMA controller fetches
the utilization and SF values from each instance in the LBG
at every sampling interval. These two values are saved in
a file of size 0.85 KB and communicated to the controller.
Since the measured network bandwidth between a controller
instance and an instance in the EC2 LBG is measured as
450 Mbps, the system size can potentially scale up to include
thousands of instances without any significant communication
overheads. Similar to the private cloud setup, PRIMA’s con-
troller algorithm caused negligible computational overheads in
EC2.

C. Network Service Workloads

We consider two different synthetic network service work-
loads. The file workload emulates a scenario where the service
hosts a single 1 GB file. Multiple concurrent users download
this file by issuing HTTP requests. The rate at which HTTP
requests are issued by httperf is varied to incur network band-
width utilization in the range of 10% to 90% of 1 Gbps. The
inter-arrival time between the HTTP requests is configured to
be exponentially distributed. We use the file workload to com-
pare PRIMA against other baseline policies in Section V-D
since experiments using the file workload are simpler to design
and take lesser time to complete.

We also evaluate PRIMA with a more realistic video
streaming workload. The characteristics of the workload are
summarized in Table I. To create this workload, we follow
the methodologies proposed by previous researchers [27], [28]
who characterized YouTube video streaming over HTTP. We
choose a Zipf distribution with α = 0.8 to model the popu-
larity of videos. This is consistent with previous work [27],
[29] that characterizes YouTube workloads. Since we have a

TABLE I
CHARACTERISTICS OF VIDEO WORKLOAD

small scale setup, we restrict the video population, i.e., num-
ber of unique videos, to 100. The distributions of video size
and video duration are based on past work that characterized
YouTube videos [27].

We base our video streaming workload generation on a rep-
resentative HTTP video streaming platform, Apple’s HTTP
Live streaming [30]. In this platform, videos are segmented
into smaller chunks, with each client downloading chunks of
the same video file using a technique called pacing. In this
technique, clients first download chunks at full speed until a
video buffer gets filled, upon which subsequent chunks are
downloaded only when the buffer gets emptied and needs to
be refilled. Consequently, we segment each video file on the
service into 10 second chunks with an average size of 0.5 MB,
which is the same size used by Apple’s Live Streaming [27].
Each video download from the service is denoted as a session,
which consists of sequential requests of chunks by an user.

We note that although this workload is representative of
a realistic video streaming service such as YouTube, a few
assumptions have been made for the sake of simplicity. In
particular, unlike real video services, we configure our video
benchmark to use only one bit rate instead of multiple. We
also do not permit clients and servers to adjust video quality
based on network conditions.

On the load generator host, we use the httperf tool to emu-
late video downloads through HTTP. We create 160 sessions as
input to httperf conforming to the Zipf distribution discussed
previously. Each session specifies a sequence of requests for
the chunks constituting a specific video. Due to the use of
the Zipf distribution some videos hosted by the service occur
more than once in these sessions while some videos never
get accessed. The first 3 chunks of a session are requested
without pacing delays, which emulates filling of the video
buffer, after which subsequent chunks are requested at the rate
of one chunk every 10 seconds. To emulate multiple concur-
rent streaming sessions, httperf generates session arrivals with
exponentially distributed time between successive arrivals.
Each arrival emulates one of the 160 sessions input to the tool.
We note that although session inter-arrival times are exponen-
tial, the overall chunk request pattern at an instance can be
bursty due to the use of pacing. We use the mean response
time of downloading a chunk in a session as our performance
metric for this workload.

D. Baseline Policies

We consider two interference-agnostic load balancing poli-
cies typically employed in commercial cloud platforms
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namely, Round Robin (RR) and Least Connections (LC) [8].
The RR policy distributes the incoming requests equally
among instances in the LBG. The LC policy forwards an
incoming request to the instance that has the least number
of active connections.

We compare PRIMA with an interference-aware policy we
developed called Least SF (LSF). Similar to PRIMA, LSF uses
the probe system. Unlike PRIMA, however, it does not employ
the response time and interference models. Furthermore, in
contrast to PRIMA, it requires response time measurements to
detect violations of Rth . Consider a scenario where a viola-
tion is triggered due to increased interference at one or more
instances. LSF attempts to rectify this problem by directing
more workload to instances with lower SF values. Specifically,
consider an LBG with n instances. Denoting the sum of SF
values of these instances as SFtotal , the policy first calculates
a set of weights SFi/SFtotal for i ranging from 1 to n. It then
assigns the largest of these values as the load balancing weight
for the instance with the lowest SF value, the next largest value
as the weight for the instance with the next lowest SF value
and so on.

We also study a policy similar to LSF called Least Response
time (LR) that uses the measured mean response times instead
of the SF values to drive the load balancing. Under the LR
policy, the instance with the lowest measured response time
is assigned the largest fraction of the incoming workload. The
weight calculation is similar to LSF except that the measured
mean response times are used instead of the measured SF
values.

E. Experiment Process

We first use our private cloud setup to build and validate the
PRIMA models, compare PRIMA with other baseline policies,
and validate PRIMA’s effectiveness. To this end, we use both
the file and video streaming workloads. For these 2 workloads,
we train the probe to obtain a look up table for a network
utilization range of 10% to 90% in steps of 10%. Each run is
repeated 5 times. This results in the width of the 95% CI of the
measured mean probe response time at any given utilization
to be within 5% of the sample mean.

For constructing the models for the file workload, we again
cover an operating utilization range of 10% to 90% in steps
of 10% by varying the mean request inter-arrival times of
the workload. For each step, we vary the interfering load so
that the SF ranges from 0 to 20. The interfering load is cre-
ated using the iperf3 tool. We run 6 interfering loads per step
and repeat each experiment 5 times to get a tight bound on
the CI of the service response time. Each step takes approxi-
mately 200 seconds to complete. We use the test data collected
from these experiments to construct the models described in
Section III-B2. We follow a similar process for the video
streaming workload. We note that running the iperf3 tool
within an instance to generate interfering load incurs similar
behaviour as running the tool on a separate collocated instance
that competes for the same shared host-level resource. The
effect on the application response time and SF values in both
cases were identical, as verified in our private cloud setup.

TABLE II
RESPONSE TIME MODEL VALIDATION

We first use the file workload to compare PRIMA with the
baseline methods. Next, we validate the ability of PRIMA
to maintain mean response times at each instance below
Rth using the video streaming workload. The Rth values
for the file and video streaming workloads are 200 ms and
1000 ms, respectively. These targets are approximately the
mean response times of the file and video streaming work-
loads at U = 35% and U = 30%, respectively when there is no
interference. In experiments involving PRIMA, the minimum
number of instances in the LBG is set to 1.

Using the video streaming workload, we also study the
sensitivity of PRIMA’s models to non-exponential session
inter-arrival times. Finally, we show an experiment where mea-
sured response times can be used to calibrate model prediction
errors at runtime.

We next use the EC2 setup for validating PRIMA on a
real public cloud platform. We use the video streaming work-
load for this purpose. For constructing the PRIMA models, we
cover an operating utilization range of 10% to 90% in steps
of 10% by varying the mean request inter-arrival times of the
workload. For each step, we vary the interfering load using
iperf3 so that the SF ranges from 0 to 10. The Rth value for
the video streaming workload is 75 ms, which is approximately
the mean response times of this workload at U = 50%, when
there is no interference. Similar to our private cloud setup, the
minimum number of EC2 instances in the LBG is set to 1.

VI. RESULTS FROM PRIVATE CLOUD

A. Model Validation

We first validate the RTM using the video streaming work-
load. In addition to the experiments done in order to construct
RTM, an additional 10 experiments are conducted by using SF
and utilization values not covered in the data used to construct
the model. Due to space constraints, a subset of results from
this experiment are shown in Table II. As seen from the table,
the response time of the system is more sensitive to higher
values of SF and utilization. Also, note that the response time
increases when either the utilization or the SF values increase.
For example, we notice an increase in response time in the first
and second rows of the table where the utilization is the same
but the SF increases. Similarly, the response time increases
when the utilization increases but the SF values are the same,
as seen in the third and fourth rows. From the table, there is
a maximum of 9.8% error in predicting the mean response
time when using RTM. Over all 10 experiments conducted,
the mean error in actual response time and predicted response
time given by RTM is 7.2%

The interference model IM is validated in a similar man-
ner to RTM with a mean error of 6.9% between the actual
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Fig. 1. Interference Model.

TABLE III
RR POLICY

TABLE IV
LC POLICY

and predicted SF values. Figure 1 shows IM for the video
streaming workload. From the figure, the model captures the
non-linear relationship between SF and the total utilization
Utotal imposed on the shared resource. The SF value of an
instance is relatively insensitive at lower utilizations. However,
sharp increases in the SF value can be observed even for rela-
tively small increases in Utotal at the higher utilization regions.
We obtain similar results for RTM and IM for the file work-
load. The mean prediction errors reported by RTM and IM for
the file workload are 6.8% and 6.1%, respectively.

B. Comparing PRIMA With Baseline Policies

We first focus on the RR policy. We run the network ser-
vice serving the file workload on two different instances.
Both instances run on different sockets of the server host.
Network contention is introduced for instance 2 by running
an additional SoI instance on its socket. We implement the
RR algorithm which distributes the incoming traffic equally
between the two instances. Table III shows the results of this
experiment. The last column denoted by U in the table refers to
the total network utilization of the socket hosting an instance.
From the table, the interference injected by the SoI instance
on instance 2 is reflected as a higher measured network uti-
lization on this instance’s socket. RR causes both instances to
have the same throughput as measured in requests completed
per second. However, despite the equal workload distribution
the interference from the SoI instance causes the response time
of instance 2 to be more than 3 times that of instance 1.

Next, we present an experiment to demonstrate the inef-
fectiveness of the LC policy under interference. We consider
the same scenario as RR whereby instance 2 is impacted by
interference. By adjusting the idle times between successive

Fig. 2. LSF: Case 1.

requests generated by httperf within a session, we create a
state where instance 1 and instance 2 are servicing 30 and
20 active connections, respectively as shown in Table IV.
Although instance 2 is handling fewer active connections, its
mean response time is more than twice that of instance 1 due
to interference from the SoI instance. This experiment shows
that the number of active connections is not a good predictor
of response time in the presence of interference. Hence, the
LC policy will not perform well under such conditions.

These experiments demonstrate the problems faced by cloud
subscribers using popular load balancing algorithms. These
policies could be improved by additionally considering the
total network bandwidth per socket while distributing incom-
ing requests. However, cloud subscribers cannot typically
monitor this metric directly thereby motivating the need for
other policies.

We next consider the interference-aware LSF policy out-
lined in Section V-D when the network service is subjected
to the file workload. We first discuss a scenario where LSF
is able to alleviate a response time violation. The results of
this experiment are shown in Fig. 2. At t = 0 the system has
instance 1 active. The utilization of the instance U1 is 40%.
It is also suffering from interference with SF1 = 0.75. The
combined effect is that the measured mean response time
of the instance R1 = 245 ms exceeds Rth = 200 ms. LSF
requests that instance 2 be spun, which becomes available
at t = 30. One sampling interval later, it measures SF2 as
0.75 at t = 40. Since the SF values for both instances are the
same, LSF divides the system workload equally between both
instances such that U1 = U2 = 20% at t = 50. This causes the
response times of both instances to fall below Rth . We note
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TABLE V
COMPARISON BETWEEN LR AND PRIMA

Fig. 3. LSF: Case 2.

that since workload has been removed from instance 1, SF1

drops from 0.75 to 0.47 at t = 50. However, since workload
has been added to instance 2 SF2 increases from 0.75 to 1.10
at t = 50. Accordingly, the mean response time of instance 1
and instance 2 are 128 ms and 183 ms, respectively.

We next discuss an experiment depicted in Fig. 3 that illus-
trates the limitations of LSF. The experiment is similar to the
previous experiment except that SF2 is measured as 0.25 at
t = 40, i.e., the new instance has 3 times less interference
than the existing instance. Consequently, LSF directs 3 times
more load to instance 2 causing U1 to drop from 40% to 10%
and U2 to be 30% at t = 50. The workload shift causes SF1

and SF2 to be 0.48 and 0.58, respectively at t = 50. While
the new workload assignment causes R1 to drop below Rth to
59 ms, it causes R2 to be 262 ms, i.e., above Rth . While LSF’s
decision to allocate more workload to instance 2 is correct, it
assigns too much workload to that instance by not taking into
account the effective capacity of the instance.

By using RTM and IM to compute the effective capacities
of both instances, PRIMA arrives at a better workload dis-
tribution decision for the same scenario. PRIMA’s workload
distributions causes U1 and U2 to be 17% and 23%, respec-
tively at t = 50. With this assignment, the response times

of both instances fall below Rth . This experiment confirms
the importance of using models that capture the interactions
between workload and interference to estimate the effective
capacity of an instance.

Finally, an experiment is conducted for demonstrating the
limitations of the LR policy. Recalling from before, the LR
policy monitors the response time of instances in the LBG
and distributes load to each instance in reverse order of the
ratio of their response times when the response time of an
instance exceeds Rth . Two instances, instance 1 and instance 2
are run on two different sockets of the server with U1 = 35%,
SF1 = 0.8, U2 = 15% and SF2 = 0.8. Due to interference, the
response time of instance 1 is R1 = 220 ms, which exceeds
Rth . However, due to its lower utilization instance 2 has a
response time of R2 = 105 ms, which is below Rth . Table V
shows how LR and PRIMA handle this scenario. As seen in
the table, the LR policy allocates U1 = 17% and U2 = 33%,
which results in R1 = 82 ms and R2 = 365 ms, respectively.
Thus, the LR policy is unable to maintain the response time
threshold in all the instances in the LBG. PRIMA uses its
models to better capture the effect of interference in both
instances by allocating U1 = 28% and U2 = 22%, thus main-
taining the response time threshold in both instances. This
experiment further demonstrates the superiority of the PRIMA
technique when compared to techniques that do not use models
for mitigation.

C. PRIMA With Video Streaming Workload

In this experiment, we evaluate PRIMA’s ability to scale
out and scale in while facing fluctuating levels of incoming
workload and interference. Table VI captures the results of this
experiment. From the table, the system initially has instance 1
running on one socket of the server host. Instance 1 is config-
ured to have no contention, i.e., SF1 = 0, and incurs utilization
U1 = 30%, which does not violate the response time target
Rth = 1000 ms. This is seen at the 1 minute mark in Table VI.

After 100 seconds from the beginning of the experiment, we
increase the incoming workload to the system so as to incur
an utilization of 40% in instance 1 which causes its measured
response time R1 to exceed Rth . This violation is detected by
PRIMA and verified as a consistent problem, as observed at
the 2 minute mark in the table (violations are marked in bold in
the table). Since the total incoming load at this time is higher
than the effective capacity of instance 1, PRIMA mitigates
this problem by requesting a scale out. This results in the
addition of a new instance 2 on another socket of the server
which does not face any contention. This instance becomes
available after 30 seconds and PRIMA monitors SF2 = 0 after
an additional sampling interval, i.e., 10 seconds. Since the sum
of the effective capacities of instances 1 and 2 exceeds the
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TABLE VI
VIDEO STREAMING WORKLOAD

incoming load to the system, PRIMA does not scale out any
further and distributes the incoming workload equally between
both instances such that U1 = U2 = 20%. The response times
of both instances are below Rth , as seen at the 3 minute mark
in the table.

After another 30 seconds, the incoming workload to the
system is decreased from 40% to 30%. PRIMA detects this
decrease in workload after 10 seconds and confirms that this
behaviour is consistent after an additional 10 seconds. Since
the effective capacity of instance 1 is enough to accommodate
the total incoming traffic to the system at this point, PRIMA
scales in by assigning all incoming workload to instance 1 and
terminating instance 2. Consequently, the measured response
time of instance 1 increases but is still maintained below Rth ,
as seen at the 4 minute mark in the table. These results demon-
strate the effectiveness of the PRIMA technique to scale out
and scale in to handle fluctuations in the incoming workload
to the system.

After 40 seconds, we introduce contention on both sockets
of the server by running additional SoI instances on these
sockets. This introduces interference in instance 1 such that
SF1 = 0.45 and as a result R1 exceeds Rth . PRIMA detects
this Rth violation after 10 seconds and waits for an additional
10 seconds to confirm this behaviour. This is observed at the
5 minute mark in Table VI. At this point, PRIMA is forced to
scale out again, and spins a new instance 2 as detailed earlier.
This instance becomes available after 30 seconds and PRIMA
monitors SF2 = 0.25 after an additional 10 seconds.

PRIMA verifies that the total effective capacities of
instances 1 and 2 exceeds the incoming load to the system
and does not scale out any further. PRIMA distributes the
incoming workload to instances 1 and 2 such that U1 = 18%
and U2 = 12%. We note that since workload is removed from
instance 1 and added to instance 2, SF1 drops from 0.45 to
0.27 and SF2 increases from 0.25 to 0.37. PRIMA success-
fully mitigates the interference problem by maintaining the
response times of both instances below Rth , as observed at
the 6 minute mark in the table.

Table VI also illustrates the limitation of techniques that
manage interference by imposing statically defined utiliza-
tion thresholds on instances [9]. Consider a utilization target
of 30%. From Table VI, this threshold would have pre-
vented response time violations for the first 4 minutes when
the instances do not suffer from interference. However, the
threshold would have been ineffective beyond minute 5 when
instance 1 suffers from interference. Since the utilization
threshold is not exceeded, the system would have failed to
scale out thereby causing sustained response time violations.

D. PRIMA Model Calibration

We first conduct a sensitivity analysis experiment to ascer-
tain the effectiveness of PRIMA to see if it works well
when the incoming workload arrival pattern changes from the
one used to construct the PRIMA models. Recalling, inter-
arrival times between successive sessions are exponentially
distributed in the experiments used to build the models. We
now explore two other arrival patterns for the video streaming
workload namely, deterministic and ramp. In the determinis-
tic workload, the inter-arrival time between sessions is fixed.
The ramp workload consists of two phases. In the first phase,
sessions arrive with an exponentially distributed inter-arrival
time. During the second phase, the mean inter-arrival time
between sessions is significantly decreased to emulate a sud-
den surge in incoming sessions as typically experienced by
video streaming services. We configure the ramp workload to
suddenly switch from a low utilization of 10% in phase 1 to
a higher utilization of 60% in phase 2.

We run tests to compare the performance of PRIMA with
these 3 different workloads. Table VII shows the results of
this experiment. In the table, Exp, Det, and Rmp denote
the exponential, deterministic and ramp workloads, respec-
tively. Measured response times above Rth are shown in bold.
Initially, only instance 1 is run on a socket of the host server
with no contention, i.e., SF = 0, and incurring utilization
U1 = 25% for all 3 workloads. The response times of all
3 workloads are maintained below Rth , as reflected at time
t = 10. Contention is introduced in both sockets of the server at
this point such that SF1 = 4.3 and SF2 = 0.26. Consequently,
the response time for all 3 workloads in instance 1 violates
Rth , as seen at t = 20 in the table. PRIMA detects this viola-
tion and the system scales out by running instance 2 on another
socket of the server. Finally, PRIMA distributes the incom-
ing traffic between instances 1 and 2 such that U1 = 10%,
U2 = 15% and SF1 = 3.7, SF2 = 2.3. As seen at t = 80
in the table, PRIMA is successful in mitigating this problem
for the exponential and deterministic workloads, but fails to
do so for the ramp workload. The response times of both
instances are slightly higher than Rth for the ramp workload.
We note that this happens because the PRIMA models fail to
account for the near instantaneous surge in traffic in the ramp
workload. However, despite the extreme nature of the surge,
PRIMA maintains the response time of the ramp workload
within approximately 10% of Rth .

We test the automated calibration policy described in
Section IV on the experiment conducted for the ramp work-
load. Calibration is triggered since the predicted response time
is within δ = 10% of Rth . We monitor the response time
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TABLE VII
SENSITIVITY ANALYSIS

TABLE VIII
PRIMA IN EC2: INCREASE IN WORKLOAD

of instance 2 and use it in Eq. (2) to calculate ˆSF2 = 2.7,
which reflects the instance’s monitored response time. Note
that ˆSF2 = 2.7 is higher than the SF2 = 2.3 recorded by the
probe. We use this higher value to estimate a revised effec-
tive capacity of instance 2 from U2 = 15% to U2 = 13%.
The response time of instance 2 does not exceed Rth when its
workload is dropped to this new utilization. A similar result
is obtained when applying this policy to instance 1. PRIMA
can then request an additional instance to handle the excess
workload pruned from these instances.

VII. RESULTS FROM EC2

We now present experiments done on our EC2 setup using
the video streaming workload to validate PRIMA on a scal-
able public cloud platform in face of varying workload and
interference conditions. As mentioned earlier, we investigate
the behaviour of PRIMA to see if it can handle scenarios where
adding just one additional instance to the LBG is insufficient to
handle the sudden increase in workload and interference. We
also show how PRIMA can scale in and terminate multiple
instances from the LBG instantaneously when needed. Prior
to running the experiment in EC2, we validated the PRIMA
models to confirm that the mean error in prediction across
both models does not exceed 6.5%.

A. Handling Sudden Increase in Workload

We first validate PRIMA in EC2 to see if it can handle
a sudden increase in incoming workload to the LBG. We
do not introduce interference in any instance for this part of
the experiment. The results of this experiment are shown in
Table VIII. If one or more instances in the LBG exceed the
response time threshold, the time and the utilizations of the
instances violating the threshold are marked in bold red in the
table. We initially start with instance 1 that incurs an utilization
U1 = 50%, which does not violate the response time target
Rth = 75 ms, as seen at the 100 second mark in the table. As

we continuously increase the workload to the LBG, PRIMA
successfully scales out and adds up to 4 instances to the LBG
such that the response time of each instance does not exceed
Rth , as seen at the 510 second mark. At the 620 seconds mark,
we increase the incoming load to the LBG substantially such
that when PRIMA spins an additional instance 5 at 670 sec-
onds, the sum of the effective capacities of all 5 instances is
insufficient to accommodate the incoming load. PRIMA cor-
rectly recognizes this and spins an additional instance 6 before
redistributing the incoming load. Only after PRIMA estimates
that the sum of the effective capacities of the 6 instances in
the LBG exceeds the total incoming load does it distribute the
workload equally between all instances. The response time of
each instance in the LBG after this distribution does not exceed
Rth , as seen at the 720 seconds mark. This experiment vali-
dates how PRIMA can dynamically add multiple instances to
the LBG to accommodate a sudden increase in workload.

B. Handling Heavy Increase in Interference

In the next phase of the experiment, we increase the
interference in the LBG by varying the interfering load from
the workload generator to the iperf3 tool running inside each
instance. The results of this experiment are shown in Table IX.
The values for SF5, SF6, SF7 and SF8 are not shown in the
table since these values are always set to 0. Interference is
introduced at the 830 seconds mark such that SF1 = 6.3,
SF2 = 6.2 and SF3 = 6.4. Since the effective capacities of
instances 1, 2 and 3 are lowered due to contention, the incom-
ing load exceeds the sum of the effective capacities of the 6
instances in the LBG. PRIMA spins an additional instance 7 to
mitigate this violation at the 880 second mark. However, since
the sum of the effective capacities of the 7 instances is still
lower than the total incoming load, PRIMA scales out again
and adds instance 8 to the LBG. PRIMA then redistributes
the incoming workload such that U1 = U2 = U3 = 19.5%
and U4 = U5 = U6 = U7 = U8 = 48.3%. The response
time of each instance is maintained below Rth , as seen at
the 930 seconds mark. We next increase the interference in
instance 4 at the 1040 second mark such that SF4 = 7.5.
As a result, PRIMA has to scale out again and adds instance
9 to the LBG at the 1090 second mark. However, we intro-
duce contention in instance 9 such that SF9 = 1.8. PRIMA
correctly predicts that further scaling out is needed and spins
instance 10 where SF10 = 0.5. PRIMA then redistributes the
incoming load such that U1 = U2 = U3 = 19.5%, U4 = 9%,
U5 = U6 = U7 = U8 = 48.3%, U9 = 12%, and U10 = 27.3%,
as seen at the 1140 seconds mark. The response times of all 10
instances in the LBG are just below the Rth value at this point.
This phase demonstrate how PRIMA successfully scales out
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TABLE IX
PRIMA IN EC2: INCREASE IN INTERFERENCE

TABLE X
PRIMA IN EC2: SCALING IN

in face of increased interference. They also show how PRIMA
can dynamically add more instances to the LBG if the newly
added instance is itself facing a high level of interference.

C. Scaling in Multiple Instances Concurrently

In the final phase of this experiment, we remove interference
in instances 1 and 2 such that SF1 = SF2 = 0 at the 1250
second mark, as seen in Table X. PRIMA estimates that the
sum of the effective capacities of instances 1, 2, 5, 6, 7, 8
are sufficient to accommodate the incoming workload. As a
result, PRIMA scales in, i.e., terminates, instances 3, 4, 9, 10
from the LBG. PRIMA then redistributes the incoming load
such that U1 = U2 = U5 = U6 = U7 = U8 = 50% and the
response time of each instance in the LBG is maintained below
Rth , as seen at the 1270 second mark. This phase validates
that PRIMA can dynamically scale in and remove multiple
instances from the LBG concurrently in one step.

VIII. CONCLUSION AND FUTURE WORK

This paper addresses the challenging problem of subscriber-
driven cloud interference mitigation by presenting a novel
technique called PRIMA. PRIMA uses data-driven models
that consider the joint impact of workload and interference
on the response times of resource instances in a load bal-
anced service system. The models are used at runtime to
intelligently scale the system and distribute load across all its
instances such that the response time of each instance is below
an operator specified threshold. To the best of our knowl-
edge, we are not aware of other subscriber-driven interference
mitigation techniques that provide an explicit mechanism
to meet response time targets while using the least possi-
ble number of instances. Furthermore, in contrast to similar
techniques, PRIMA does not require hardware counter and
service response time measurements, which can impose large
overheads.

Results show that PRIMA’s model-based approach outper-
forms approaches such as LSF that do not use models but
rather rely solely on monitoring the instances. Using a real-
istic video streaming workload in private and public cloud
environments, we show that PRIMA is able to respond to
fluctuations in both workload and interference. Furthermore,

results show that PRIMA is robust towards workload assump-
tions made while building the models. Finally, results show
that our modeling approach allows calibration at runtime to
effectively rectify the impact of any modeling errors.

Future work will integrate workload prediction techniques
into PRIMA to make it more proactive. The probe system
used by PRIMA is capable of detecting interference for other
PM resources, e.g., processors and memory. Future work can
exploit this feature to derive response time and interference
models for specific PM resources. This will in turn allow
PRIMA to adapt its behaviour depending on the resource that
is experiencing the most interference. Finally, we will focus
on integrating PRIMA with vertical scaling strategies as part
of future work.
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