
48 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Subscriber-Driven Interference Detection
for Cloud-Based Web Services

Joydeep Mukherjee, Diwakar Krishnamurthy, and Mea Wang

Abstract—Web services are now increasingly being hosted on
public cloud infrastructure as a service platforms such as the
Amazon Web service elastic compute cloud (EC2). However,
previous studies have shown that the virtualized infrastructure
used in public clouds can introduce contention among virtual
machines (VMs) for shared physical host resources eventually
leading to performance problems. Subscribers in a public cloud
platform typically do not have access to metrics that can directly
quantify the adverse impact of such inter-VM interference on
Web service response times. We present a software probe based
system to address this limitation. The probe is a lightweight
application that runs on each Web service VM that needs to
be monitored. We periodically measure the probe’s response
time on a monitored VM. We then compare this response time
with the probe’s previously recorded baseline no-interference
response time when it executes in isolation on a VM of the same
type. Statistically significant increase in the probe’s response
time from the baseline is used to detect interference. The
probe also indicates the type of contention at the physical host
that causes the interference. This information can be exploited
by a subscriber to mitigate the problem. Results show that
our approach is quite effective over two different cloud plat-
forms and a wide variety of workload scenarios. In particular,
results indicate that Web service instances hosted on EC2 suf-
fer from interference. Our probe was able to detect 93% of
performance degradations triggered by such interference. In all
these cases, the probe imposed an average overhead of only
3%–4% on the mean response time of the Web service being
monitored.

Index Terms—Cloud computing, virtualization, data center
management, software performance engineering.

I. INTRODUCTION

THE NOTION of unlimited computing resources and the
pay-as-you-use model of cloud computing has attracted

many Web applications, such as Netflix and Pinterest.
Resource virtualization and sharing in the cloud is achieved
through running multiple virtual machine (VM) instances on
each physical machine (PM) in data centers. However, such
virtualized infrastructure can cause performance degradation
when the VM instances interfere with each other by competing
for shared PM resources [1]–[3]. Cloud management activi-
ties, such as VM scheduling, startup, and migration, can also

Manuscript received June 27, 2016; revised December 1, 2016; accepted
December 2, 2016. Date of publication December 21, 2016; date of current
version March 9, 2017. The associate editor coordinating the review of this
paper and approving it for publication was H. Lutfiyya.

The authors are with the University of Calgary, Calgary, AB T2N 1N4,
Canada (e-mail: jmukherj@ucalgary.ca; dkrishna@ucalgary.ca;
meawang@ucalgary.ca).

Digital Object Identifier 10.1109/TNSM.2016.2642838

cause performance deterioration [4]. Such performance issues
raise challenges for cloud-based Web services. Service users
expect immediate response when browsing a Web page and
long response times can cause frustration. Since most public
cloud systems do not typically provide performance guaran-
tees, cloud subscribers need techniques to detect performance
interference so that they can take remedial measures, e.g.,
upgrade their VM instances or switch to a different cloud
provider.

Most earlier studies for detecting performance interference
have focused on cloud providers and not on cloud subscribers.
Specifically, such studies [5], [6] have been exploiting host
PM level metrics such as cache misses and Clock Cycles per
Instruction (CPI) to detect interference. Unfortunately, most
commercial cloud platforms do not implement such methods
thereby necessitating subscriber oriented approaches.

Interference detection is a much more challenging problem
for a subscriber than it is for a provider. Unlike providers, sub-
scribers generally do not have access to PM level metrics such
as CPI that can directly quantify contention between VMs. For
example, Amazon Web Services (AWS) offers a monitoring
service called Amazon CloudWatch [7] to collect and track
a VM’s resource usage, e.g., CPU consumption, but nothing
at the PM level to track the resource usage of other VMs on
the PM. Consequently, a subscriber has to rely on measures
that can be collected within their Web service VMs to detect
interference. In particular, a subscriber oriented approach has
to address the difficult problem of selecting an appropriate
measure that can distinguish between performance degrada-
tions caused by interference from those caused merely due to
change in the Web service’s workload.

To get around the lack of PM level metrics, public cloud
subscribers such as Netflix have used VM level resource usage
metrics such as the CPU steal metric as a proxy to infer con-
tention for PM resources [8]. However, we find in this work
that it is difficult to characterize the severity of interference
on Web service response times using such metrics alone. An
alternative approach is to use thresholds based on Web service
level metrics such as request response times and throughput.
For example, additional VM instances can be automatically
provisioned to a Web service using tools such as AWS’s Auto
Scaling [9] if the service’s response times increase beyond
a threshold. However, such a threshold based approach can-
not distinguish between performance degradations caused by
workload fluctuations, e.g., a change in the mix of requests
served by the Web service, from those caused by interference.
As a result, a subscriber cannot, for example, quantify the

1932-4537 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



MUKHERJEE et al.: SUBSCRIBER-DRIVEN INTERFERENCE DETECTION FOR CLOUD-BASED WEB SERVICES 49

financial impact of having to provision the additional instances
to handle interference.

Others have used machine learning algorithms in conjunc-
tion with Web service level metrics to isolate the impact of
interference [10], [11]. However, these techniques require a
fully instrumented Web service to record response times of
every incoming request. This might not be always feasible
since such fine-grained instrumentation can impose variable
overheads, e.g., increased overheads when system has a higher
request throughput. Additionally, while these techniques can
detect interference they are not designed to indicate the type
of contention at the physical host that causes the interference.
For example, a cloud subscriber will not only be interested in
detecting contention in the cloud platform but will also want
to know which shared resource, e.g., processors, network, or
disk, is encountering contention.

We address these issues through an alternative subscriber
oriented approach that utilizes a software probe. The tech-
nique provides a direct reflection of how contention for a
particular PM-level resource can impact the response time
of a virtualized Web service that relies on that resource. It
requires a subscriber to execute a low overhead application,
which we refer to as the probe, inside each Web service VM
instance to be monitored. The probe is designed to exercise
a specific PM-resource, e.g., processors, whose contention the
subscriber wants to characterize. The subscriber first runs this
probe application in isolation on a separate reference VM
instance with the same specifications as the monitored VM
instance. By subjecting the probe application in the reference
instance to a micro-benchmark workload, the subscriber can
estimate for various VM resource utilization levels the baseline
response times of the probe application when it is not impacted
by performance interference. Next, the probe application is
deployed within the monitored instance and periodically sub-
jected to the same micro-benchmark workload. Every time the
probe is subjected to this workload, its response time and the
resource utilization of the monitored instance are recorded.
Any statistically significant degradation in this response time
from the previously recorded baseline response time at this uti-
lization is flagged as an indication of contention for the shared
PM resource. Additionally, our system allows the subscriber
to control the characteristics of the probe application and its
micro-benchmark workload to infer the types of resource con-
tention, e.g., processor, network, or disk, occurring on the PM.
The subscriber can use information reported by the probe
on the type and severity of contention along with knowl-
edge of their application’s workload to mitigate the impact
of interference.

We experimentally evaluate the approach on our private
cloud platform as well as on different types of AWS Elastic
Compute Cloud (EC2) instances. In particular, we show that
standard resource usage metrics reported by a VM’s operat-
ing system may alone not be effective in capturing the extent
to which contention can impact a Web service’s response
time thereby motivating our approach. We also show that
performance interference is a real phenomenon in public cloud
systems and that our approach is very effective in identify-
ing such interference. Specifically, we show that an EC2 Web

service can exhibit very different performance for the same
workload, indicating the presence of interference. Using two
different sets of workloads, we show that our probe is able
to detect approximately 93% of EC2 induced performance
degradations and predict their severity. The study also shows
that the probe is able to differentiate performance degra-
dations caused by interference from those due to workload
fluctuations. Furthermore, compared to other approaches based
on monitoring PM level hardware counters [12], the probe
imposes modest per-core utilization and response time over-
heads of only 3% - 4% on an average. We also show that our
probe design can generalize to identify various types of PM
resource contention, e.g., contentions for processors and net-
work. Finally, we show that the probe system will incur only
a very minor cost increase to a cloud subscriber.

The rest of the paper is organized as follows. Section II pro-
vides an overview of existing work. In Section III, we present
the system architecture of the software probe. The experiment
setup for validating the probe is described in Section IV. We
provide a justification for the probe approach using a private
cloud platform in Section V. The probe is evaluated on EC2
in Section VI. We present a sensitivity analysis for the probe
system in Section VII. Section VIII concludes the paper.

II. RELATED WORK

Many studies have identified that batch and scientific appli-
cations hosted in the cloud suffer from performance vari-
ability [13]–[15]. Iosup et al. [13] analyze the performance
of scientific workloads on EC2. Iosup et al. [14] study
the performance of the AWS and Google App Engine
(GAE) platforms for batch workloads over a period of two
months. Both studies conclude that application performance
exhibits time-dependent characteristics with daily and monthly
patterns.

Existing studies have also focused on performance variabil-
ity of cloud-based Web services. Dejun et al. [16] study the
performance variability of three synthetic Web applications on
a small EC2 instance. The authors find that the performance
of the small instance is relatively stable over the long term.
However, they observe high performance variability in small
instances across different availability zones in AWS. In con-
trast, Mukherjee et al. [17] observe significant performance
variability for Web applications hosted on all types of EC2
instances even within the same availability zone.

A significant number of studies have focused on devis-
ing techniques that cloud providers can use for detecting
inter-VM performance interference [2], [5], [6], [18]–[25].
Mukherjee et al. [2], [12] develop a probe based system to
detect performance interference in their private cloud setup.
In contrast to our work, their probe is intended to be run by
a cloud provider and hence needs to execute directly on the
PM. This is not possible for a cloud subscriber in systems
such as EC2. Fu [5] proposes a provider oriented approach
that uses PM level metrics such as CPU usage, memory
and swap utilization, and page faults to detect performance
anomaly. Blagodurov et al. [6] also propose a similar con-
tention detection approach that uses PM level metrics such as

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



50 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

cache miss rates. As discussed previously, subscribers typically
do not have access to PM level metrics.

In contrast to the above methods, our focus is on enabling a
cloud subscriber to detect performance degradation in a pub-
lic IaaS cloud in the absence of PM or VM level metrics.
As discussed in Section I, subscriber oriented interference
detection is a challenging problem. Casale et al. [8] pro-
pose an approach aimed at enabling subscribers to detect the
impact of interference on the performance of batch applica-
tions. By continuously monitoring the execution times of a
set of batch benchmarks and the average CPU steal metric of
a VM instance, the authors are able to identify 30% to 40%
of the performance interference events affecting the VM. In
contrast to their work, our work focuses on interactive Web
applications. We find in our study that metrics such as CPU
steal alone might not be effective in detecting the severity of
response time degradations due to interference.

Similar to our work, Maji et al. [10] propose an interference
detection approach for Web applications that is suited for sub-
scribers of public clouds. The authors employ a supervised
decision tree classifier that uses a simultaneous sharp increase
in VM CPU utilization, a decrease in the Web application’s
throughput, and an increase in the application’s response time
as a signature to infer interference. Amannejad et al. [26]
apply a collaborative filtering based machine learning tech-
nique on the response times collected from a Web application
in order to detect interference. The response times required for
the method are obtained by intercepting incoming and outgo-
ing requests using a proxy server. Javadi et al. [27] propose
a subscriber oriented method that can use application metrics
such as response time in combination with a queueing model
of the application to detect and quantify interference.

In contrast to these three methods, our approach does
not rely on monitoring the Web service’s response times or
throughput. As a result, it does not require fine-grained appli-
cation instrumentation or proxy servers to record response
times. Furthermore, unlike the approaches of Maji et al. and
Amannejad et al., the probe can be designed to provide
insights into the type of PM level contention that is trigger-
ing a degradation in the Web application’s response times. For
example, if the probe indicates frequent contention for the net-
work and the Web application’s workload is network-intensive,
then a subscriber can ameliorate the problem by upgrading to
an instance that provides more network bandwidth. Finally,
in contrast to the method of Javadi et al., our approach does
not require the construction and parametrization of queueing
models, which can be challenging for real-life Web services.

III. ARCHITECTURE OF THE PROBE

Fig. 1 shows the architecture of our probe based system for
detecting performance interference. It has three main compo-
nents namely, a probe application, a probe workload generator,
and a controller. The probe application is installed on the
instance hosting the Web application, referred to as the mon-
itored instance. The probe application is also installed alone
on a separate reference instance that has the same specifica-
tions as the monitored instance. The probe workload generator

Fig. 1. System architecture of the probe.

and the controller are hosted on a separate probe instance
that submits a synthetic micro-benchmark workload to the
probe applications on the monitored and reference instances.
We refer to this workload as the probe workload. Interference
is detected by analyzing the fluctuations in the performance
recorded for the probe workload.

The rationale for the system architecture is as follows.
Since the objective is to detect performance degradation due to
problems in the cloud platform, the probe system must meet
two key design requirements. First, the probe should either
ignore the Internet delay or bypass the Internet. We choose to
place the probe in the same platform where the Web applica-
tion is hosted, e.g., EC2 in one of our case studies. Hence,
any performance fluctuation recorded by the probe reflects
performance problems in the cloud or the stress from the Web
application’s workload. Second, the probe should distinguish
performance interference effects from normal performance
degradations due to workload surges or changes in the work-
load request mix that are experienced by the Web application.
We now explain how our design achieves this requirement.

To apply our approach, a subscriber first needs to identify
the PM resources whose contention is of interest. For the sake
of simplifying this discussion, we assume that the subscriber is
interested in monitoring contention for one resource and we
refer to this resource as the contention resource. For exam-
ple, if the Web application being monitored is predominantly
processor-intensive, then the subscriber might wish to focus
only on contention for PM processors since such contention
can adversely impact application response times. We note that
our approach can generalize to consider multiple contention
resources as we show later in Section VII.

Next, the cloud subscriber has to select a standard
micro-benchmark probe application specific to the con-
tention resource being monitored and estimate the baseline
performance of this probe application when there is no con-
tention for that resource from other VM instances. A reference
instance with the same specifications as that of the mon-
itored instance is used for the purpose of obtaining this
baseline data. Depending on the cloud platform and the con-
tention resource being monitored, there are several methods to
ensure that there is no contention for the resource from other
VMs when the baseline performance of the probe applica-
tion is being recorded. We discuss some of these methods in
more detail later. When obtaining the baseline performance,
our system automatically varies the utilization of the con-
tention resource by the reference instance by employing

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



MUKHERJEE et al.: SUBSCRIBER-DRIVEN INTERFERENCE DETECTION FOR CLOUD-BASED WEB SERVICES 51

a background workload. Collecting data at various utiliza-
tion levels allows our system to differentiate performance
degradations due to workload changes experienced by the
Web application from cloud platform induced performance
interference. The range of utilizations is chosen to progres-
sively go from scenarios where the reference instance lightly
loads the contention resource to scenarios where it places
heavy load on that resource.

For each utilization level explored, the probe workload is
submitted to the probe application on the reference instance
and response times are recorded for the requests constituting
this workload. Since the probe needs to impose low overhead,
the probe workload is designed so as to lightly utilize the
contention resource. The results of such tests are then used
to construct a lookup table that maps any given utilization
level of the contention resource as measured within a VM
to a 95% confidence interval (CI) of the probe workload’s
mean response time at that level. This lookup table is used as
an estimate of the baseline performance of the probe under
various VM utilization levels when there is no interference,
i.e., no competition for the contention resource from other
VMs. For this estimate to be reliable, our system automatically
repeats each test to obtain tight CIs.

Once the baseline performance has been established, a
subscriber can start using the probe application alongside
the Web application in the monitored instance to detect
interference. The probe instance gathers response time data by
submitting the probe workload periodically to the probe appli-
cation within the monitored instance. For each submission of
the probe workload, the workload’s response times and the
contention resource’s utilizations as collected within the mon-
itored instance during this period are recorded and sent to the
controller. To detect a performance interference problem, the
controller compares this data against the baseline lookup table
constructed previously.

The general approach used by the controller to detect
interference is as follows. The controller first locates the
lookup table entry corresponding to the mean of the
resource utilization measurements collected from the moni-
tored instance. It then obtains the CI corresponding to this
entry. If the mean probe response time is larger than the
upper limit of the CI, the controller infers that the probe
response time is abnormally high given the workload expe-
rienced by the Web application in the monitored instance.
Consequently, it estimates that the increased probe response
time is due to interference, i.e., competition from other VMs
for the contention resource. This in turn indicates that the Web
application’s performance might be impacted as well due to
this contention.

The controller can also take further measures to mitigate the
detected interference. By controlling the PM resources stressed
by the probe workload, the system can infer the resources that
suffer the most contention. Over a certain period of time, the
controller can record the number of performance interference
issues along with the type of resource contention encountered
in a VM in order to provide an estimate of the quality of the
cloud platform to the subscriber. Based on this information,
the subscriber can decide to migrate the monitored instance to

a different type of VM that is likely to suffer less interference
for the contention resources identified. Alternatively, if the
interference is very severe and frequent, the provider can
decide to move to a different cloud provider. The subscriber
can make an informed decision to migrate especially if the tim-
ing of the performance interference issues align with that of the
performance degradation cases reported by end users. These
mitigation algorithms are orthogonal to the work presented in
this paper.

The following subsections describe the probe system’s com-
ponents and their interaction in more detail. For the sake
of simplicity, we outline our design by considering the pro-
cessor as the contention resource. We present experiments
in Section VII that demonstrate how our approach can be
applied to additionally consider a PM’s network bandwidth
as a contention resource.

A. Probe Workload Generator

The probe workload generator generates a stream of syn-
thetic requests to the probe application, which is a lightweight
Web application running on the monitored instance. The work-
load generator is configured to generate a burst of requests
at the rate of C HTTP connections per second (cps) over a
period of t seconds. Since we focus on the processor, each
request causes a processor-intensive PHP script to be invoked
by the probe application. The script causes an exponentially
distributed CPU service time with a mean of s seconds. We
note that other distributions such as uniform or deterministic
distributions can be used as well. We also note that the time
between successive bursts sent by the probe workload gener-
ator to the probe application is a configurable parameter that
can be set by a subscriber. The smaller this value the more
frequently the controller checks for interference.

The value of C, t, and s are used to control the overhead
imposed by the probe application on the monitored instance.
To this end, we use the automated tuning algorithm outlined
in [12] to select these values such that the probe application
imposes an average per-core VM utilization in the range of 3%
to 4% every time it is subjected to its workload. We find that
our system is able to detect most instances of interference with
these settings and increasing the overhead beyond this level
does not significantly increase detection accuracy any further.
We note that the probe parameters need to be tuned for each
type of instance one wishes to monitor.

B. Probe Application

Previous studies [28]–[30] show that real Web workloads
exhibit very good locality, e.g., a significant fraction of
requests are for a small set of popular Web objects. This
suggests that the demands placed on the processor dominate
in such systems. Consequently, we first focus our atten-
tion on processor-intensive Web applications handling a large
number of HTTP connections per second from multiple con-
current user sessions. Accordingly, our probe application is
also a processor-bound Web application. As mentioned in

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



52 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Section III-A, upon receiving each request the probe appli-
cation invokes a PHP script that incurs an exponentially
distributed processor service time with a mean of s seconds.

The probe application is hosted on a separate Web server
within the monitored instance. This is done to ensure that any
performance degradation observed in the probe is unrelated to
problems that might manifest as a result of using the same
Web server for both the Web and probe applications.

C. Reference Instance

As mentioned previously, our system requires past
performance data collected from a reference instance to detect
interference. We now outline in detail the process for obtaining
this baseline data.

Since we focus on processors as the contention resource, a
processor-intensive synthetic application is used as the back-
ground workload to vary the per-core VM utilization of the
reference instance from UMin% to UMax% in steps of UStep%.
These parameters can be configured by the subscriber. As
mentioned previously, for each utilization level tests using
the probe workload are conducted to record the sample mean
probe response time Rlookup and the 95% CI of mean probe
response time. The upper and lower limits of this CI are
denoted as maxRlookup and minRlookup, respectively. We note
that the tests used to obtain the lookup table should be repeated
multiple times to obtain the 95% CI of mean probe response
time. To achieve this, our system automatically repeats tests
till the width of the CI is within 5% of the sample mean. We
also note that the lookup table may need to be refreshed when-
ever the cloud provider upgrades the PMs used to support the
monitored instance. In spite of these requirements, the refer-
ence instance will not add significant costs to the subscriber
since it does not have to execute continuously. A detailed cost
analysis of running the reference instance in a public cloud
platform is discussed in Section VI-B.

D. Controller and Interference Detection

The controller is responsible for detecting performance
interference. As mentioned previously, the controller uses
mean request response time as a performance metric. However,
other metrics such as the median and the 95th percentile of
response times can also be used. As discussed previously, the
probe workload generator periodically invokes the probe appli-
cation inside the monitored instance with a burst of requests
and collects the probe application’s request response times
for the burst. The probe workload generator then sends this
response time data to the controller. Furthermore, per-core VM
utilization data for the monitored instance over the period of
the burst is also sent to the controller. The controller uses this
information to calculate the average response time Rp of the
probe workload and the average per-core VM utilization Up

of the monitored instance.
To identify potential cloud induced performance degrada-

tions manifested in Rp, the probe system utilizes the lookup
table constructed using the reference instance. Given the
response time from the monitored instance Rp at an observed

per-core VM utilization of Up, the controller uses linear inter-
polation on the lookup table data to estimate maxRlookup.
As we show in Sections V and VI, this interpolation tech-
nique is found to be adequate for both our private and
public cloud testbeds. If Rp exceeds maxRlookup, the controller
infers that there is significant performance interference in the
monitored instance due to PM-level contention for the pro-
cessor. Otherwise, the controller infers that the performance
of the monitored instance is normal given that the monitored
instance’s per-core VM utilization is Up.

Though the 95% CI of Rlookup provides a good reference
for expected performance when there is no interference, it is
still possible that the controller has false detections. A false
negative report refers to the case where the controller does not
detect the interference when the interference presents; a false
positive report refers to the case where the controller flags a
performance interference when there is no interference.

We also use another metric, severity factor SF, to provide
us more insights on the severity of interference. The SF is
calculated as the difference between the actual response time
Rp at a per-core VM utilization of Ulookup and maxRlookup –
the upper limit of the 95% CI of Rlookup at Ulookup, scaled by
the mean response time Rlookup, as shown in Eqn. 1.

SF =
{

(Rp−maxRlookup)

Rlookup
, if Rp > maxRlookup

0, otherwise
(1)

Higher values of SF mean that the actual response times
are significantly higher than the upper limit of the 95% CI
of Rlookup, which implies a severe interference. A mitigation
algorithm may define a threshold value to determine whether
the interference is severe enough to warrant any subsequent
action. Proper threshold values prevent costly actions in case of
a false positive or minor problems. We use the SF to evaluate
the probe approach in Section VI.

IV. EXPERIMENT SETUP

We use our private cloud setup as well as the EC2 IaaS
cloud for evaluating the probe. This section summarizes the
experimental setup and the rationale for the setup.

A. Validation Probe Instance

In order to verify that the probe detects interference trig-
gered response time increases experienced by the Web appli-
cation being monitored, we setup a validation probe instance
as shown in Fig. 2. The validation probe instance shares the
same design specification with the probe instance. However,
as shown in Fig. 2, it interacts with the Web application as
opposed to the probe application. This allows us to obtain the
ground truth on the Web application’s performance.

From Fig. 2, we first use a separate Web application refer-
ence instance to obtain baseline no-interference performance
of the Web application under study. Similar to the reference
instance used by the probe application, the Web application
reference instance has the same specifications as the monitored
instance. It is used exclusively to execute a copy of the Web
application under study. The validation probe instance submits

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



MUKHERJEE et al.: SUBSCRIBER-DRIVEN INTERFERENCE DETECTION FOR CLOUD-BASED WEB SERVICES 53

Fig. 2. Experimental Setup.

a specific test workload of interest from the Web workload
generator (to be detailed in Section IV-B) to this reference
instance. Rref

w represents an estimate of the mean Web appli-
cation response time under the test workload that is not biased
by any performance interference effects.

To obtain baseline response time data of both the probe
and the Web applications, we need to make sure that the
performance of these applications running inside the two ref-
erence instances as shown in Fig. 2 are not affected due
to performance interference. For this purpose, we use ded-
icated instances supported by many public cloud platforms
such as EC2 [31] and Rackspace [32] for hosting the ref-
erence instances. A dedicated instance in EC2 has the same
specification as a general instance but it is physically isolated
at the host hardware level from non-dedicated instances of
other subscribers. Consequently, a dedicated instance is much
more expensive than a non-dedicated instance.1 However,
since the reference instances are not needed continuously the
subscriber will not incur significant costs, as we show later in
Section VI-B.

To validate the probe system, we run the validation probe
instance in parallel with the probe instance. The sequence
numbers labeled from 1 to 4 as shown in Fig. 2 for both
the validation probe instance and the probe instance indi-
cate how these two instances run in parallel. The validation
probe instance first gets synthetic Web requests constituting
the test workload from the Web workload generator. It then
submits this workload to the Web application on the monitored
instance. The validation probe instance calculates the average
response times Rw of the Web application on the monitored
instance for the test workload and passes it to the controller.
Similar to the controller in the probe instance, the controller
in the validation probe instance compares Rw with the 95%

1It must be noted that providers such as EC2 can still co-locate multiple
dedicated instances belonging to the same cloud subscriber on the same PM.
As a result, using expensive dedicated instances alone may not eliminate
interference when a subscriber has multiple such instances.

CI of Rref
w and infers whether there is significant performance

degradation in the Web application. We compare reports from
the validation probe instance and the probe instance to verify
the correctness of the probe system.

It must be noted that a separate validation probe instance
as shown in Fig. 2 is used only for the purpose of validat-
ing the probe system for this paper. In the real world, the
probe deployment will be similar to that shown in Fig. 1.
Furthermore, our design allows a single rented instance work-
ing as the probe instance to monitor several probes inside
several monitored instances. As a result, cloud subscribers
have to incur minimal additional cost to use the probe system
in a public cloud system. More detailed cost analysis is
discussed later in Section VI-B.

B. Workloads

We use httperf [33] to generate workloads for both
the probe and the Web applications. httperf can estab-
lish multiple concurrent HTTP connections with a Web server
application under test. It can be configured to vary factors such
as the load, i.e., connections per second (cps), and the number
of requests sent to the server. We use a modified version of
httperf where one instance of httperf can simultane-
ously send workload to multiple Web servers each having a
distinct IP address. The reason for using the modified version
is that it allows a single probe workload generator to simulta-
neously monitor multiple instances, thus keeping the cost of
operation low.

We choose two different test workloads for the Web applica-
tion: micro-benchmark and RUBiS [34]. The micro-benchmark
generates requests to invoke a PHP script on the Web appli-
cation that causes an exponentially distributed synthetic CPU
service demand. Due to its simplicity, this workload allows us
to quickly evaluate the probe under a wide variety of loads
for various cloud instance types. We complement these results
with those from the more realistic RUBiS workload [34],
which emulates users issuing a series of inter-dependent trans-
actions to an auction server. We use the default read-intensive
browsing transaction mix specified by RUBiS.

We also configure the Web workload generator with two
different x-second arrival processes: steady and ramp. The
steady arrival process is a stationary process with an exponen-
tially distributed mean inter-arrival time between successive
requests. We set the mean cps issued by httperf such that
the mean per-core VM utilization is around 50% for each
EC2 instance type. The ramp arrival process consists of two
equal-length phases. During the first phase, requests arrive
with an exponentially distributed inter-arrival time, similar to
the steady arrival process. However, during the second phase,
the mean inter-arrival time between requests is half that of the
first phase to emulate a sudden surge of incoming requests that
Web applications often experience. Our goal is to show that
the probe captures performance interference problems induced
by the cloud platform as opposed to expected performance
variations caused by the workload surge in the ramp work-
load. We select the mean request inter-arrival times for the
two phases such that the per-core utilizations of the instance

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



54 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

TABLE I
PROBE PARAMETERS FOR PRIVATE CLOUD

for the first and second phase are 50% and 90%, respectively.
In our experiments, we set the length of the arrival process x
to 100 seconds for the micro-benchmark workload and to 200
seconds for the RUBiS workload.

To obtain the lookup table discussed in the previous section,
we execute a synthetic background workload on the reference
instance that can incur various levels of per-core VM utiliza-
tion. This workload consists of successive invocations of a
program that randomly selects an integer between 0 and 1000
and calculates all the prime numbers between 0 and that num-
ber. The time between successive invocations of this program
is automatically controlled to achieve a desired per-core VM
utilization on the reference instance.

C. Private Cloud Environment

We first conduct experiments in our private cloud environ-
ment to demonstrate the motivation for our probe approach.
Running experiments in the private cloud allows for a con-
trolled environment with access to PM level metrics which is
not possible in a public cloud environment. Our private cloud
consists of a 12-core, dual socket Intel Xeon E5645 server.
Multiple VMs are consolidated on this server using Kernel-
based Virtual Machine (KVM) as the virtual machine monitor.
Details of the server are given in Table II. Each VM is con-
figured with 1 virtual CPU (VCPU) and 1 GB of physical
memory. To keep the Web and probe application completely
independent of each other, we host the Web and probe appli-
cation on Apache (version 2.2) and lighttpd (version 1.4.35)
Web servers, respectively.

To monitor VM performance under different workloads,
we use a workload generator host connected to the server
over a dedicated 1 Gbps connection. This host is an 8-core,
dual socket AMD Shanghai Opteron 2378 server machine. For
these tests, we subject VMs on the server to the RUBiS work-
load using httperf. Using a process similar to that described
in Section IV-D, we ensure that the workload generator does
not introduce any performance bottlenecks.

Our system automatically tunes the probe parameters C, t,
and s for the private cloud such that the probe application
imposes a per-VCPU overhead of 3–4% on the server. The
resulting probe parameters are given in Table I. We find that
these probe parameter settings cause only a modest increase
of 3–5% in the Web application’s mean response time. The
synthetic background workload as described in Section IV-B
is used for constructing the lookup table for the server. The
values of UMin, UMax, and UStep are chosen as 10, 99 and 10,
respectively.

D. Amazon EC2 Environment

We validate the probe system in the well known EC2 IaaS
platform. We use three types of EC2 instances in this work:

TABLE II
HARDWARE AND SOFTWARE SPECIFICATIONS

TABLE III
AMAZON EC2 INSTANCE TYPES

m1.small, m1.medium and m1.large. The characteristics of
these instances are summarized in Table III. The CPU power
of each instance type is expressed in terms of CPU units. In
EC2, one CPU unit provides the equivalent CPU capacity of
a 1.0-1.2 GHz 2007 AMD Opteron or 2007 Intel Xeon pro-
cessor. In our experiments, we used the /proc/cpuinfo utility
of Ubuntu to confirm that EC2 used the same type of physical
machine hardware for our instances throughout this study.

The number of cores refers to the number of VCPUs in the
instance. All these instances are located in the same region
(U.S.-West-Oregon) and their IP addresses belong to the same
network subnet. Ubuntu server version 12.04 (kernel version
3.2.0-40-virtual) is installed as the operating system in all three
instances. The software stack used for the Web application is
the same as that used in our private cloud. Collectl [35] is
used in each instance to monitor VCPU utilizations.

The response times measured by httperf depend on the
performance of the monitored instance, the performance of the
probe instance, and the bandwidth available between the two
instances. Since we are interested only in the performance of
the monitored instance, the setup must eliminate bottlenecks
in the probe instance and the network. For this reason, we
conduct experiments on different types of EC2 instances to
determine the right type of EC2 instance to host the probe
instance. Observations from these experiments, which are part
of our earlier work [17], are summarized below for the sake
of clarity:

1) Choice of Probe Instance: Our results show that choos-
ing a wrong type of instance can lead to incorrect estimation
of the response time of the Web application. For example, for

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



MUKHERJEE et al.: SUBSCRIBER-DRIVEN INTERFERENCE DETECTION FOR CLOUD-BASED WEB SERVICES 55

Fig. 3. Hourly available bandwidth inside EC2.

the micro-benchmark workload the response times reported
by probe instances running on either a small or a medium
instance are three times and two times higher than that from
a large instance, respectively. Furthermore, response times
obtained from a large probe instance are very close to those
obtained by using more powerful instances. Therefore, we use
a large EC2 instance as our probe instance. Our results indi-
cate that one large instance can generate workload for up to
50 probe applications thereby ensuring costs are kept low for
the subscriber.

2) Bandwidth Between the Probe Instance and the
Monitored Instance: Bandwidth variations between the probe
instance and the monitored instance can account for huge
variations in the response time measured of the probe applica-
tion. Though bandwidth fluctuation is unavoidable, the impact
can be avoided by ensuring the bandwidth available between
the probe instance and the monitored instance is ample for
the workloads used in this study. We collect hourly network
bandwidth in EC2 using the Iperf tool [36] over a period of
two weeks. Fig. 3 depicts a representative day in this period.
From the figure, the bandwidth available in the EC2 network
is quite stable. Furthermore, the network bandwidth available
is significantly higher than that required by our workloads.

As a Web service can be hosted on any of the small,
medium, or large instance in EC2, we will select one instance
of each type to monitor. We test the performance of the
Web application subjected to the steady micro-benchmark
on a small, a medium, and a large instance. As expected,
the performance, in terms of response time and throughput,
improves as we move from the small instance to the large
instance. For example, at 200 cps the mean response time of
the small instance is about 17 times higher than that of the
large instance. The maximum throughput sustained by a small,
medium and large EC2 instance are 300 cps, 600 cps, and
1200 cps, respectively. All three instance types incur a high
per-VCPU utilization (in the range of 90%) while delivering
their respective maximum throughput.

The probe parameters are selected automatically as
described for the private cloud setup. The resulting probe
parameters C, s, and t are shown in Table IV. The overheads
imposed by the probe are similar to those reported for the pri-
vate cloud setup. Finally, the values of UMin, UMax, and UStep

TABLE IV
PROBE PARAMETERS FOR EC2

TABLE V
SECTION OF THE LOOKUP TABLE

used for generating the lookup table are the same as those for
the private cloud experiments.

V. THE PROBE IN A PRIVATE CLOUD

A. Experiment Methodology

In this section, we motivate the probe approach using the
private cloud setup described in Section IV-C. Specifically,
we first conduct experiments to construct the baseline lookup
table for the probe. We then provide examples of the types of
performance interferences that the probe can detect and show
how VM level metrics alone are not adequate for detecting
those problems.

B. Obtaining Baseline Performance

For constructing the baseline lookup table, we use the
probe application, probe workload, and background workload
described previously. Experiments follow the configuration
settings provided in Section IV-C.

The experiment methodology is as follows. First, we run a
reference VM on one socket of the Intel server. This VM is
configured such that it can use one physical core in the socket
but this assignment is not static, i.e., the VM can execute
on any of the 6 cores. We choose this scheduling technique
as it outperformed other scheduling techniques. We run the
probe application inside this VM along with the background
workload for obtaining the lookup table. Each experiment is
repeated 10 times to get a 95% CI that is within 5% of the
mean. A section of the lookup table obtained experimentally
is shown in Table V. We perform linear interpolation on this
data to construct a complete lookup table covering all possible
per-VCPU utilization values between 10% to 99%.

From Table V, the response time of the probe application
does not seem to be very sensitive to the increase in intensity
of the background workload. The upper limit of the probe’s
response time CI increases drastically only after a VCPU

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



56 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Fig. 4. Probe with CPU time-sharing.

utilization of 90%. We use PM level monitoring data to under-
stand the reason behind this behaviour. Analysis shows that
even though the reference VM is configured to use one phys-
ical core, 2 other cores on the server are utilized by the PM
operating system. The combined utilizations of these physical
cores are in the range of 5% to 7% in the tests of Table V. This
suggests that the use of these relatively idle additional cores
allows the probe application’s response times to be insensitive
to the background workload. To validate this conclusion, we
run another test where all cores on the server are kept busy
by scheduling processor-intensive workloads on them. In this
case, we notice that the probe application’s response times are
more sensitive to the background workload. The upper limit
of the probe’s response time CIs starts increasing after the
reference VM’s VCPU utilization reaches 70%.

C. Impact of Sharing a Processor Core

As shown in past research [3], an EC2 small instance
typically receives only a 40% - 50% share of a host’s
processor core. We demonstrate how the probe can be help-
ful in detecting performance degradations caused by such
timesharing.

We first conduct a series of 10 identical tests when only
one VM (VM-1) is active and is pinned to a single core
on the server. The RUBiS workload is configured such that
the VCPU utilization of the VM is around 27%. Next, we
force timesharing by pinning the second VM (VM-2) to the
same core. VM-2’s workload is identical to that of VM-1.
While the VCPU utilization of both VMs are around 27%
each, the utilization of the physical core increases from around
27% to 52%.

Figure 4 compares the response time observed at VM-1
in both experiments. The response time of VM-2 in the sec-
ond experiment is near identical to that of VM-1 and is
hence not reported. From Figure 4, the mean response time
is nearly doubled due to the timesharing. As expected, the
increased contention for the physical core adversely impacts
the performance of the VMs.

This experiment also shows that monitoring the VCPU uti-
lization alone may not be sufficient to detect this performance
degradation. For example, in the two experiments, the VCPU
utilization of VM-1 is 27% both with and without timesharing.
Hardware monitoring shows that the L3 cache hit rates of the
core with and without timesharing are 0.92 and 0.91, respec-
tively. Since timesharing has no effect on the performance of

Fig. 5. Performance with startup activity.

the L3 cache, the Web request service demand in these two
cases does not change significantly, i.e., the VCPU utilization
remains unchanged in these two cases.

We next turn our attention to the CPU steal metric used
by others for inferring interference [8]. In the two experi-
ments, the value of CPU steal increases from 3% (without
timesharing) to 12% (with timesharing) for both VMs while
the response time increases by almost 100% with timeshar-
ing. Although this metric’s value increases with interference,
it does not convey directly the severity of the impact of
interference on VM response time. In particular, it would be
difficult for a cloud subscriber to ascertain a CPU steal thresh-
old beyond which significant response time degradations are
likely to occur.

In contrast, the probe can provide a direct reflection of how
interference impacts response time. As shown in Figure 4, the
mean response time of the probe application more than doubles
due to timesharing compared to its baseline response time in
Table V that corresponds to a VCPU utilization of 27%. This
increase mirrors the similar increase in mean response time of
the two VMs.

D. Impact of Management Activities

To provide further motivation for the probe, we study the
typical management activity of starting VMs on a host in
response to concurrent requests from cloud subscribers. We
refer to this management activity as startup activity. Previous
research [16], [17] attributes performance degradation in virtu-
alized environments to management activities similar to startup
activity. We simulate the startup activity by concurrently start-
ing up to 6 VMs on the socket of the Intel server on which
one VM is already running the RUBiS application. The RUBiS
VM is subjected to an incoming request arrival rate that incurs
around 50% VCPU utilization. The performance of the RUBiS
VM is first recorded when it is running alone without any
startup activity. Next, its performance is recorded when there
is startup activity present on the server.

Figure 5 shows the results of 10 identical runs comprising
this experiment. As shown in the figure, there is a significant
degradation in the response time of the RUBiS application
when startup activity is present on the server. On aver-
age, the startup activity degrades the response time of the
RUBiS VMs by a factor of 20. The average per-core uti-
lization of the 6 cores on the socket increases from 8.3%
to nearly 80%. The startup activity causes the L3 cache hit

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



MUKHERJEE et al.: SUBSCRIBER-DRIVEN INTERFERENCE DETECTION FOR CLOUD-BASED WEB SERVICES 57

TABLE VI
VALIDATING THE PROBE IN PRIVATE CLOUD

rate of the socket to decrease from 0.91 to 0.53. Although
this experiment represents a stress case, it nevertheless illus-
trates the unpredictability that can be triggered by management
activities.

We next use the probe to see if it can detect the performance
degradation due to the startup activity. Using the lookup table,
we compare the probe’s observed response time with the upper
limit of the 95% CI of its baseline response time at the appro-
priate VCPU utilization value. Table VI shows results from 5
representative runs. In the table, ST refers to startup activity,
VCPU-U refers to the VCPU utilization in percentage, and R
represents the response time in milliseconds. From the table,
in all the runs the mean response time of the probe increases
significantly with startup activity mirroring a similar increase
in the RUBiS response time. The probe’s observed response
time far exceeds the upper limit of the 95% response time CI
recorded in the appropriate lookup table entry.

The experiments in this section show that the probe can
detect problems that arise due to contention for the processing
cores of a host in a private cloud environment. In the ensuing
section, we provide further validation for the probe approach
using the EC2 setup.

VI. THE PROBE IN EC2

A. Experiment Methodology

We conducted experiments on EC2 over a 2 month period
spanning April 2014 to May 2014 for this study. All the work-
loads considered are processor intensive. As a result, their
performance is likely to suffer when there is contention for
PM processors.

Before starting the experiments, we construct a lookup table
of baseline response time data for each of the three types of
instances shown in Table III. For each type of instance, we
request a dedicated instance of that type from EC2 and use that
as the reference instance. The lookup table is then obtained
using the procedure described in Section IV.

For each experiment, we create an EC2 instance of the
desired type running the Web as well as the probe applications
and monitor their performance throughout the day. For each
test, we first create a synthetic trace that realizes the desired
arrival process and workload. We conduct 10 identical back to
back runs using this trace at the start of every hour and report
the mean of these runs. The 95% CIs of mean response time
for the Web application are within 5% of their corresponding
mean values. We also record at the start of every hour the
available network bandwidth between the workload generator
and the instances. The network bandwidth is stable throughout

TABLE VII
SAMPLE SIZE FOR EC2 INSTANCES

the day for every day in the week, similar to what is shown
in Fig. 3. Due to cost limitations, we did not conduct a full
factorial experimentation over all factors and levels. However,
sample results obtained from other factor-level subsets do not
suggest any change from the observed probe behaviour.

The remainder of this section is organized as follows.
We present a cost analysis for running the probe system
in Section VI-B. Results for the steady arrival process are
presented first in Section VI-C. The ability of the probe to
distinguish between EC2 interference and workload surges is
demonstrated through the use of the ramp arrival process in
Section VI-D.

B. Cost Analysis

The probe is designed to be cost effective for the cloud
subscribers. We first evaluate the cost of obtaining the base-
line performance of the probe for the three different types
of EC2 instances that we use in our experiments. As men-
tioned earlier, we use dedicated EC2 instances as the reference
instances for this purpose, the per-hourly costs of which are
considerably higher than general instances. However, using
dedicated instances allows for estimating the baseline response
time values of the probe application unbiased by performance
interference.

Table VII provides the costs incurred for constructing the
baseline lookup tables. Based on our choice of experiment
parameters and our desire for CIs that are within 5% of their
means, we only need 2.78 hours each to obtain the base-
lines for small, medium and large instances. Consequently, the
additional costs of running these tests are minimal, with the
maximum cost of 6.01 being incurred by the large dedicated
instance.

Next, we discuss the cost of running the probe instance that
executes the probe workload generator. As mentioned earlier,
we use a large instance as the workload generator for the probe
application. Our experiments show that one large instance can
generate workload for up to 50 probes. Ideally, this could be
implemented by the cloud provider or a 3rd party vendor sell-
ing the probe service, from whom companies hosting Web
applications can buy and pay only for the number of probes
they need. Based on such a scheme and EC2’s current pricing,
we estimate that the cost of hosting and generating workload
for a probe would be roughly equal to 0.084 per day. For
larger companies hosting more than 50 instances inside EC2,
the probe approach can be integrated into their infrastructure
by buying an additional large instance for every 50 instances
monitored. For these companies, adopting the probe technique
would increase their budget by merely 2%.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



58 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Fig. 6. Steady micro-benchmark - medium instance.

Fig. 7. Steady micro-benchmark - large instance.

C. Steady Workload

We first present results from the steady micro-benchmark
workload. In all these cases, the arrival process causes a 50%
mean utilization of each core in the instance.

Fig. 6 shows the performance of this workload on the
medium instance over a representative day. From the figure, in
spite of subjecting the Web application to the exact same syn-
thetic workload trace, its performance varies throughout the
day. In the worst case, the mean response time increases by a
factor of almost 3 with respect to the baseline mean response
time of the Web application. The mean response times are out-
side their baseline 95% CI for 6 hourly recorded results out
of 24, i.e., 25% of the tests.

Fig. 7 shows the performance of the large instance over
the same day. Although the performance of the large instance
is more stable, one can still observe peaks where the mean
response time increases significantly. In the worst case, the
mean response time increases by a factor of 25 from the
baseline. The mean response times fall outside their baseline
95% CI for 4 tests out of 24. We note that the performance
problems are not due to overloading of the Web application
since the application operates at a modest VCPU utilization of
50%. These findings validate previous results [17] that report
significant Web application performance variability in EC2.

We next focus on detecting the observed variabilities. The
resource utilizations measured within the instance did not
show any deviations. In contrast, from Fig. 6 and Fig. 7,
the probe tracks the deviations in the Web application’s
performance behaviour. The probe’s performance degrades
simultaneously when degradations are observed in the Web

Fig. 8. Steady RUBiS workload - small instance.

application’s performance. Probe response times correspond-
ing to the degradations are outside the relevant CI entry in
the lookup table. For these cases, the probe did not have any
false positives or false negatives. Sample results for the small
instance also show that the probe is effective in detecting
interference.

We next focus on the steady RUBiS workload over a period
of a week. As with the micro-benchmark workload, the steady
RUBiS workload is designed to cause around 50% per-core
utilization in each instance. Fig. 8 shows the performance of
a small instance for a representative day in the week. The
Web application’s performance deviates from the baseline CI
in 11 out of the 24 tests shown in the figure. The probe is
able to identify 10 out of these 11 cases. Considering the
entire week’s data, the probe is able to identify 61 of the
68 performance deviations encountered by the Web applica-
tion, i.e., nearly 90% of the total deviations. There are 2 false
positives and 5 false negatives.

Tests show that the medium and large instances are very
stable for this workload. Over a single day that we consider,
the medium instance encountered no performance problems.
On the same day, the large instance had one deviation, which
is successfully detected by the probe. Since these instances
are stable, we did not conduct tests for additional days.

D. Ramp Workload

We next use the ramp micro-benchmark workload on the
medium and large instances to understand whether the probe
distinguishes between performance interference effects and
performance changes due to a workload surge. Table VIII
shows the performance of the probe in a medium instance
over a week. Column W indicates the number of hourly test
results where the Web application showed performance degra-
dation. Similarly, the column P indicates the number of times
the probe detects the performance degradation reported in col-
umn W. Column U shows the average per-VCPU utilization of
the instance during the test. The columns False +ve and False
-ve indicate the number of false positives and false negatives
reported by the probe respectively.

From the table, 60 out of the 168 tests, i.e.,, 36% of tests,
in this period experienced performance interference. The per-
centage of tests impacted by interference varies from 25%
per-day to 46% per-day over the week. The VCPU utilizations
of the instance remains unchanged in spite of the interference.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



MUKHERJEE et al.: SUBSCRIBER-DRIVEN INTERFERENCE DETECTION FOR CLOUD-BASED WEB SERVICES 59

TABLE VIII
Ramp MICRO-BENCHMARK (MEDIUM INSTANCE)

TABLE IX
Ramp MICRO-BENCHMARK (LARGE INSTANCE)

The probe is able to detect 53 of the 60 performance degrada-
tions, i.e., 90% of degradations, in the Web application during
the course of that week.

Note that if the probe mistakes the workload surge in the
second phase of the ramp workload as interference, then
it would yield 100% false positive reports. However, from
Table VIII the probe only reports 2 false positives over the
week. Furthermore, the probe yields only 5 false negatives in
this period.

Table IX shows the performance of the probe in a large
instance for the same week. The performance of the Web appli-
cation in the large instance is quite stable, with just 18 hourly
results out of 168, i.e., 11% of tests, reporting performance
degradation in a week as opposed to 60 in case of a medium
instance. On two days of the week, there is no performance
degradation in either the Web or the probe application. The
probe is successful in detecting 16 out of 18 performance
degradations recorded by the Web application in the large
instance over the week. There are no false positives but there
are two false negatives in this week. These results indicate
that similar to the medium instance, the probe is able to detect
nearly 90% of the performance problems manifesting inside a
large instance over the course of a week.

We now use the SF metric introduced in Section III to ana-
lyze the severity of the performance degradations reported in
Table VIII. Fig. 9 shows a scatter plot of the probe and Web
application SF values for the 53 cases where the probe is suc-
cessful. From the plot, the probe’s SF estimates are effective
in capturing the actual severity of interference, as embodied by
the Web application’s SF values. The Pearson correlation coef-
ficient between the probe and Web application SFs is +0.97.
This suggests that the controller can use the probe’s SF to
deduce the severity of the performance degradation in the Web
application.

We next take a closer look at the 7 ramp micro-benchmark
workload cases with the medium instance where the probe was

Fig. 9. Scatter Plot of SF.

TABLE X
WEEKLY SF VALUES OF MEDIUM INSTANCE

not successful. Table X shows the SF values for the false pos-
itive and false negative cases recorded by a medium instance
and its probe in the week as described earlier in Table VIII.
The second and fourth columns in Table X indicate the num-
ber of false positives and false negatives recorded in a day,
respectively. The 3rd column SF(P) and the 5th column SF(W)
represent the SF values of the probe application and the Web
application, respectively. Consider the 5th row in Table X,
which shows a day with 1 false positive and 1 false negative.
For the false positive case, the probe reports an SF of 0.13
when the Web application’s SF is 0. Similarly, consider the
4th row in the table. The probe has a false negative with its SF
being 0 when the Web application’s SF is 0.21. Considering
that the Web application’s SF values range from 0 to 19 and
probe application’s SF values range from 0 to 23 in our tests,
we can conclude that these cases represent relatively minor
performance infractions. Similar trends are observed for other
workloads and instances in our tests. These results suggest
that the controller needs to consider the probe’s SF estimates
while making decisions.

Finally, we present results to show that the probe is also
effective for the RUBiS ramp workload. We run the RUBiS
ramp workload for a day only on a small instance for cost
related issues. The ramp workload designed for RUBiS caused
around 75% VCPU utilization in a small instance. As seen in
Fig. 10, the performance of the probe closely tracks that of
the RUBiS application. Performance degradation was observed
in 10 hourly test results out of 24. The probe was able to
successfully detect all 10 cases of degradation.

The results in this section show that the probe is effec-
tive in detecting performance interference issues in the cloud
instances running both the micro-benchmark and RUBiS
workloads. The probe is also able to distinguish between
performance interference from those that occur due to work-
load surges. Furthermore, the probe’s SF value provides a good
estimate of the severity of the performance issues impact-
ing the Web application. The probe is also lightweight and

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



60 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Fig. 10. Ramp RUBiS workload - small instance.

TABLE XI
PROBE WITH A DIFFERENT WEB SERVER

imposes very low overhead on the response times of the Web
application.

VII. SENSITIVITY ANALYSIS

A. Robustness

In this section, we run experiments to ascertain the effec-
tiveness of the probe for other Web servers and workloads.
Specifically, we run experiments to see if the probe applica-
tion works well when hosted on a different Web server. We
also study the probe when it is used to monitor a Web applica-
tion hosted on a different Web server. Finally, we investigate
a scenario with a more database-intensive RUBiS workload.

The first set of experiments involves running different sets of
Web servers for the RUBiS application and probe application.
All our previous tests are conducted using Apache as the Web
server for the Web application being monitored and lighttpd as
the Web server for the probe application. To test the generality
of our approach, we run a set of tests in which we reversed the
earlier order- lighttpd is used for hosting RUBiS and Apache
is used for hosting the probe. We run the same ramp RUBiS
workload as previously seen in Fig. 10. The test was conducted
at the start of every hour over two days beginning at 18:00 on
7th May, 2014.

As seen in Table XI, the probe is very effective at detecting
the performance problems even when it is being hosted by a
different Web server than in the previous tests. Furthermore,
this result also shows that the probe is able to monitor
applications hosted on both Apache as well as lighttpd.

The next set of experiments involves running a mix of
RUBiS workload other than the default browsing mix which
we use in all earlier tests. We run the database-intensive order-
ing transaction mix of RUBiS to emulate a Web application
handling a large number of transactions involving writes. We
run this mix inside a small instance for 24 hours. A ramp
style workload is created for this transaction mix that utilizes
roughly 80% of the VCPU in the instance. We run the test at
the start of every hour for a day beginning at 18:00 on 12th
May, 2014.

Fig. 11. RUBiS ordering mix - small instance.

As seen in Fig. 11, the performance of the probe closely
emulates that of the RUBiS application running the ordering
mix. The results are more stable compared to the earlier results
obtained from running the browsing transaction mix. There
are only 2 hourly tests that show performance degradation in
RUBiS out of 24, both of which are successfully detected by
the probe.

B. Detecting Contention for Shared Network

As a final step, we demonstrate how the probe system can
be extended to monitor multiple contention resources. We con-
sider as an additional source of contention the network shared
between VMs hosted on a PM.

Performance interference due to network contention is hard
to detect using only the standard tools provided by a cloud
platform to subscribers. For example, assume that a VM’s
network bandwidth consumption drops during a given time
interval. The drop could either be due to interference, i.e.,
activities of other network intensive VMs hosted on the PM, or
due to a decrease in the application workload. This necessitates
the need for the probe approach.

Contention for the shared network can be detected by intro-
ducing a new phase to the probe. In this network phase, the
probe executes code designed to explicitly sense network con-
tention. We design the network phase of the probe as follows.
The probe’s network phase generates a probe workload where
HTTP connections are initiated at the rate of X cps to down-
load a small file of size S MB from the probe application.
The values of parameters S and X need to be tuned for each
monitored instance such that the probe application consumes
only a small fraction of the network bandwidth available to
the host.

As before, our system first constructs a lookup table for the
network phase by using a dedicated reference instance. The
lookup table maintains the 95% CI of the response time of
the probe’s network phase at various VM network bandwidth
values ranging from low to high.

Next, the network phase of the probe periodically submits
its probe workload to the probe application on the monitored
instance. Response times for the requests in the workload and
the network bandwidth consumed by the monitored instance
over this period are sent to the controller. The controller then

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



MUKHERJEE et al.: SUBSCRIBER-DRIVEN INTERFERENCE DETECTION FOR CLOUD-BASED WEB SERVICES 61

TABLE XII
SECTION OF THE NETWORK LOOKUP TABLE

consults the network phase lookup table to detect the presence
and severity of a network interference.

We experimentally evaluate the network phase of the probe
on our private cloud setup. We use the Intel server described
in Table II. We use only one socket of the server. All VMs
running on this host are configured to share a single Ethernet
network interface on the physical host. This interface is con-
nected to a load generation host through a dedicated 1 Gbps
connection. The load generation machine hosts the probe and
reference probe instances shown in Fig. 2.

We first run a single VM on the socket on which we run
the probe application. We tune the parameters S and X for
the probe application to be 1 MB and 5 cps, respectively.
The tuned probe imposes a network bandwidth utilization
of around 5%. We run this application along with the Iperf
tool [36], which generates the background workload for con-
structing the lookup table. We configure Iperf to incur a wide
range of network bandwidth utilizations to build the lookup
table shown in Table XII (B/W refers to the bandwidth utilized
by the VM in Mbps).

Next, the monitored VM executes a network-intensive Web
application alongside the probe application. The Web applica-
tion’s workload consists of downloads of a 1 GB file. The rate
at which HTTP connections are issued to download this file is
selected such that the Web application consumes around 75%
of the total available network bandwidth when executing alone
in its VM. Up to 3 additional VMs executing workloads statis-
tically similar to those of the monitored VM are progressively
consolidated on the socket.

Table XIII shows that the probe can detect the network
resource contention triggered by this consolidation. Values
marked in bold represent cases where the Web application
or the probe application experience performance degradations.
When there is only a single VM on the socket, the Web
application on the VM does not suffer from interference. The
probe’s mean response time is within the 95% CI estimated
from the lookup table for a VM bandwidth of 792.4 Mbps. As
seen in the table, when more network intensive VMs are con-
solidated on the socket, the Web application’s response time
increases and the monitored VM’s bandwidth consumption
drops as a result of network contention. The network phase
of the probe is able to detect these performance degradations,
as indicated by the increases in the probe application’s mean
response times with respect to its baseline response time CIs
recorded in the lookup table. If the probe reports frequent net-
work contention, then a subscriber can mitigate the problem
by migrating to an instance that guarantees more dedicated
bandwidth.

TABLE XIII
EFFECTIVENESS OF THE NETWORK PHASE

VIII. CONCLUSION

This paper focuses on the performance of Web services
hosted on public IaaS cloud platforms such as Amazon
EC2. We show that such platforms can induce signifi-
cant performance degradations due to contention for shared
resources, which can adversely impact the cloud subscriber
owning the service. Such behaviour has also been corrob-
orated by others [13]–[16] as well as in our private cloud
setup. Unfortunately, most existing contention management
techniques are targeted for use by cloud providers and can-
not be used by cloud subscribers. The few subscriber oriented
approaches proposed in literature require fine-grained Web
service instrumentation. Furthermore, while many of these
techniques can detect contention they cannot provide infor-
mation about the specific cloud resources experiencing the
contention.

To address these issues, we develop a subscriber oriented
contention detection system that employs a software probe.
The probe executes alongside each Web service instance to
be monitored. Response times emitted by the probe provide
a direct reflection of how contention for any given shared
cloud resource impacts the response time of the monitored
Web service.

We show that the probe system outperforms methods that
solely rely on common performance metrics made avail-
able to subscribers on public cloud systems. We also show
through experiments spanning a variety of workloads, Web
servers, and cloud systems that the probe is very effective
in detecting the existence and quantifying the severity of
performance interference problems triggered by contention.
The probe system imposes very little overheads on the moni-
tored instance. Furthermore, it does not require any Web ser-
vice level instrumentation to record response times. The probe
can also offer insights on the specific cloud resources, e.g.,
processor and network, suffering from contention. Subscribers
can use this information to decide on an appropriate method to
mitigate the effect of that contention. Finally, our study shows
that the probe system imposes only modest additional costs
for the subscriber.

In this work, we exploit dedicated reference instances
to get an estimate of baseline probe performance without
interference. The probe system can be adapted in a straightfor-
ward manner to handle platforms that do not support dedicated
instances. Considering the processor contention example, base-
line tests could be conducted using a non-dedicated reference
instance. We can then use the VM-level CPU steal metric
collected during these tests to isolate those tests where the
reference instance is not impacted by interference, i.e., tests
during which the value of CPU steal is 0.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



62 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Future work will focus on interference mitigation tech-
niques that can exploit the probe. Specifically, we will devise
algorithms that can use the probe’s severity factor to drive
techniques such as load balancing. Due to cost constraints,
we were only able to focus on EC2 and limit ourselves to a
period of 2 months. Future work will consider a longer period
and include other public cloud platforms to further corroborate
this study.

REFERENCES

[1] G. Kousiouris, T. Cucinotta, and T. Varvarigou, “The effects of schedul-
ing, workload type and consolidation scenarios on virtual machine
performance and their prediction through optimized artificial neural
networks,” J. Syst. Softw., vol. 84, no. 8, pp. 1270–1291, 2011.

[2] J. Mukherjee, D. Krishnamurthy, J. Rolia, and C. Hyser, “Resource con-
tention detection and management for consolidated workloads,” in Proc.
IEEE IM, Ghent, Belgium, 2013, pp. 294–302.

[3] G. Wang and T. S. E. Ng, “The impact of virtualization on net-
work performance of Amazon EC2 data center,” in Proc. INFOCOM,
San Diego, CA, USA, 2010, pp. 1–9.

[4] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation into
network performance in virtual machine based cloud environments,” in
Proc. IEEE INFOCOM, Toronto, ON, Canada, 2014, pp. 1285–1293.

[5] S. Fu, “Performance metric selection for autonomic anomaly detection
on cloud computing systems,” in Proc. GLOBECOM, Houston, TX,
USA, 2011, pp. 1–5.

[6] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware
scheduling on multicore systems,” ACM Trans. Comput. Syst., vol. 28,
no. 4, p. 8, 2010.

[7] AWS CloudWatch. Accessed on Dec. 2016. [Online]. Available:
http://aws.amazon.com/cloudwatch/

[8] G. Casale, C. Ragusa, and P. Parpas, “A feasibility study of host-level
contention detection by guest virtual machines,” in Proc. CloudCom,
Bristol, U.K., 2013, pp. 152–157.

[9] Auto Scaling. Accessed on Dec. 2016. [Online]. Available:
http://aws.amazon.com/autoscaling/

[10] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating
interference in cloud services by middleware reconfiguration,” in Proc.
Middleware, Bordeaux, France, 2014, pp. 277–288.

[11] Y. Amannejad, D. Krishnamurthy, and B. Far, “Managing performance
interference in cloud-based Web services,” IEEE Trans. Netw. Service
Manag., vol. 12, no. 3, pp. 320–333, Sep. 2015.

[12] J. Mukherjee, D. Krishnamurthy, and J. Rolia, “Resource contention
detection in virtualized environments,” IEEE Trans. Netw. Service
Manag., vol. 12, no. 2, pp. 217–231, Jun. 2015.

[13] A. Iosup et al., “An early performance analysis of cloud computing
services for scientific computing,” Faculty Eng., Math. Comput. Sci.,
Delft Univ. Technol., Delft, The Netherlands, Tech. Rep. PDS-2008-006,
Dec. 2008.

[14] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability
of production cloud services,” in Proc. CCGrid, Newport Beach, CA,
USA, 2011, pp. 104–113.

[15] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in Proc. IEEE/ACM Int. Symp. Microarchit., Porto Alegre,
Brazil, 2011, pp. 248–259.

[16] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 performance analysis
for resource provisioning of service-oriented applications,” in Proc.
ICSOC/ServiceWave, Stockholm, Sweden, 2009, pp. 197–207.

[17] J. Mukherjee, M. Wang, and D. Krishnamurthy, “Performance testing
Web applications on the cloud,” in Proc. ICSTW, Cleveland, OH, USA,
2014, pp. 363–369.

[18] Y. Tan et al., “PREPARE: Predictive performance anomaly prevention
for virtualized cloud systems,” in Proc. ICDCS, 2012, pp. 285–294.

[19] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini,
“DeepDive: Transparently identifying and managing performance
interference in virtualized environments,” in Proc. USENIX ATC,
San Jose, CA, USA, 2013, pp. 219–230.

[20] Q. Guan, C.-C. Chiu, Z. Zhang, and S. Fu, “Efficient and accurate
anomaly identification using reduced metric space in utility clouds,”
in Proc. IEEE NAS, Xiamen, China, 2012, pp. 207–216.

[21] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring met-
ric subspace in cloud computing infrastructures,” in Proc. IEEE SRDS,
Braga, Portugal, 2013, pp. 205–214.

[22] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling for
heterogeneous datacenters,” ACM SIGARCH Comput. Archit. News,
vol. 41, no. 1, pp. 77–88, 2013.

[23] A. Roytman, S. Govindan, J. Liu, A. Kansal, and S. Nath, “Algorithm
design for performance aware VM consolidation,” Microsoft Res.,
Bengaluru, India, Tech. Rep. MSR-TR-2013-28, 2013.

[24] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing
performance interference effects for QoS-aware clouds,” in Proc.
EuroSys, Paris, France, 2010, pp. 237–250.

[25] N. Rameshan, L. Navarro, E. Monte, and V. Vlassov, “Stay-away, pro-
tecting sensitive applications from performance interference,” in Proc.
Middleware, Bordeaux, France, 2014, pp. 301–312.

[26] Y. Amannejad, D. Krishnamurthy, and B. Far, “Detecting performance
interference in cloud-based Web services,” in Proc. IEEE IM, Ottawa,
ON, Canada, 2015, pp. 423–431.

[27] S. A. Javadi, S. Mehra, B. K. R. Vangoor, and A. Gandhi, “UIE: User-
centric interference estimation for cloud applications,” in Proc. IEEE
IC2E, Berlin, Germany, 2016, pp. 119–122.

[28] M. F. Arlitt and C. L. Williamson, “Web server workload characteri-
zation: The search for invariants,” SIGMETRICS Perform. Eval. Rev.,
vol. 24, no. 1, pp. 126–137, 1996.

[29] A. M. Faber, M. Gupta, and C. H. Viecco, “Revisiting Web server work-
load invariants in the context of scientific Web sites,” in Proc. ACM/IEEE
SC, Tampa, FL, USA, 2006, p. 25.

[30] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 1, pp. 53–64, 2012.

[31] Dedicated Instance. Accessed on Dec. 2016. [Online]. Available:
https://aws.amazon.com/ec2/purchasing-options/dedicated-instances/

[32] Collectl. Accessed on Dec. 2016. [Online]. Available:
https://www.rackspace.com/

[33] httperf. HTTP Performance Measurement Tool. Accessed on Dec. 2016.
[Online]. Available: http://www.hpl.hp.com/research/linux/httperf/
httperf-man-0.9.pdf

[34] Rubis Rice University Bidding System. Accessed on Dec. 2016. [Online].
Available: http://rubis.ow2.org/

[35] Collectl—Linux Man Page. Accessed on Dec. 2016. [Online]. Available:
http://linux.die.net/man/1/collectl

[36] IPERF—The TCP/UDP Bandwidth Measurement Tool. Accessed
Dec. 2016. [Online]. Available: http://iperf.fr/

Joydeep Mukherjee received the M.Sc. degree
from the University of Calgary and the B.E. degree
from the National Institute of Technology, India.
He is currently pursuing the Ph.D. degree with
the University of Calgary, Canada. His research
interests include software performance engineering,
virtualized systems, cloud computing, and computer
networks.

Diwakar Krishnamurthy is an Associate Professor
with the University of Calgary. He is currently
involved in research projects related to cloud com-
puting, virtualization technologies, big data analyt-
ics, and healthcare simulation. His research interests
are focused on the performance evaluation of soft-
ware systems.

Mea Wang is currently an Associate Professor with
the Department of Computer Science, University
of Calgary. Her research interests include peer-
to-peer networking, multimedia networking, cloud
computing, as well as networking system design and
development.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on September 08,2024 at 20:53:59 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


