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Abstract—In self-adaptive systems, model-based control as-
sumes decisions are taken based on a model that is identified
at run-time. The model is built by measuring the control inputs,
disturbances, and outputs of the controlled system and fitting the
data into a function. Models can be accurate locally, that is, for
data already seen by the system and by the model identification
method. However, many times an Autonomic Manager (AM)
needs to move the cloud-native applications into new operational
points, e.g. by adding new applications to the shared environment,
scaling applications or consolidating resources. There are no
data points yet for these new operational regions to have any
certainty that the prediction models are accurate. In this paper,
we propose a method to identify a model that predicts metrics at
any unexplored operational point of a cloud-native application.
The method is based on a lightweight Look-Ahead Scanner
(LAS) mechanism that explores different operational points by
injecting controlled short-lived load. We evaluate our method on
realistic applications deployed on public clouds. We show that
the proposed method can build models that outperform the state
of the art ML models by 42%.

Index Terms—Microservices, Performance Modeling, Cloud
Computing, Machine Learning

I. INTRODUCTION

Modern applications are often composed of lightweight
containers that are hosted on Virtual Machine (VM) instances
on public cloud platforms. These applications are increasingly
following a service architecture and are being deployed as
services running inside containers on cloud platforms such
as Amazon Web Services or Google Cloud Platforms [1],
[2]. Containers belonging to different applications are often
co-located on the same VM to utilize resources more effi-
ciently. Sharing resources by co-locating application(s) and
their containers can reduce the cost and energy footprint [3],
[4]. However, these co-located containers can often compete
for VM-level shared resources, which can in turn negatively
impact the Quality of Service (QoS) for the applications
running inside these containers. Therefore, it is important to
model the performance impact of co-locating containers at run-
time so that adaptive actions can be taken to ensure good QoS
for the cloud-native applications.

Static models have been used in the past to quantify the
impact of co-locating different cloud-native containers on the
same VM. Static models are trained in a training phase and
then deployed at run-time to leverage their prediction ability.
Static models benefit from their training on a large amount

of historical data which results in better accuracy. However,
modern applications deployed in a DevOps environment are
dynamic in nature, i.e., the state of such applications in terms
of number of containers, incoming workload, and underlying
features change frequently at run-time. Static models do not
lend themselves well to frequent changes in application state
since these models have to be re-trained every time the
application state changes. Furthermore, it is challenging to
obtain historical training data for static models that capture
the future dynamics of a cloud-native application for all of its
possible states. In light of this observation, dynamic models
that can be quickly constructed at run-time by taking into
account the current state of the application are often preferable
over static models [5].

Model based control in self-adaptive systems utilizes dy-
namic models created at run-time to make adaptive decisions
[6]. These models are built around an Operational Point,
defined as the performance utilization, workload patterns and
other configurations that describe the software system at its
normal behavior. However, no studies have shown how these
models extrapolate to regions far from the current opera-
tional point. A running ‘in-production’ cloud application can
experience a change in its operational point when there is
a change in the cloud environment. Changes in the cloud
environment are frequent, e.g. co-location, patching, scaling,
etc. When a new co-located application is deployed and
share the same environment, containers sharing the same
VMs, network or services can interfere with each other and
affect the performance of in-production applications running
on those containers [7], [8]. We need to be able to predict
the performance impact on production applications when new
applications are co-located. Similar situations arise when con-
solidating resources, that is, dynamically re-distributing the
containers of the same applications, or when the autonomic
manager anticipates an increase in the load and evaluates the
impact on the application Service Level Agreement (SLA).
We define this problem as Change Impact Prediction (CIP).
CIP is akin to an autonomous driving radar scanning of future
positions, such as intersections, obstacles, etc that informs the
self-driving software on the impact of its decisions. Being able
to scan and look ahead from the current operational point and
predict dynamically the impact of a drastic change will allow
us to make appropriate adaptation decisions to prevent end-
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user performance from being significantly affected and keep
our cloud application(s) within the SLA.

In this work, we conduct experimental studies to verify
our hypotheses that models trained only on historical data
are inefficient in predicting the performance impact of a
significant change such as when another application is de-
ployed on the same VM(s) along production applications.
Then, we propose a dynamic modeling technique for the
Change Impact Prediction in cloud native applications. This
technique uses a Look-Ahead Scanner (LAS) approach that
injects controllable disturbances at run-time to scan ahead
different operational points, and therefore enables a model that
is accurate around these operational points. These controllable
disturbances should be injected with care so that production
applications do not breach the SLA. Therefore, our research
questions for this work are as follows:

• RQ-1: What is the prediction accuracy of change impact
models built with only historical data and how do they
compare with those built using a Look-Ahead Scanner
(LAS) mechanism?

• RQ-2: How effective is the LAS-based model in predict-
ing the impact of changes on production cloud applica-
tions?

For RQ-1, we build models around operational points and
run change prediction experiments. We also develop a method
to inject controllable disturbances to an application environ-
ment to produce data-points for unexplored target operational
data points without breaching the SLA. These data points are
used as supplemental training data for the model to cover the
target operational points of the cloud environment. For RQ-2,
we evaluate how performance models trained with the data
points produced by these injected controllable disturbances
can predict the effect of co-locating a new application along
a production one.

The original contributions of this paper are as follows:

• We show that models built on historical data do not
predict accurately metrics outside of operational regions;
we show that on Machine Learning, Regression and
Queuing Network models.

• We propose a Look-Ahead Scanner (LAS) that injects a
short-lived load and collects additional data at the target
operational points;

• We show that models built with the data collected through
our LAS are accurate and outperform those built with
historical data by reducing the mean absolute percentage
error (MAPE) by up to 42%.

• We validated the findings through experiments on public
clouds and across many operational point changes.

The remainder of the paper is organized as follows. We
discuss the background of current research in performance
modeling in self-adaptive cloud systems in Section II. We
discuss the motivations and foundations of our work in Sec-
tion III. We then present our methodology architecture and
approach in Section IV. We then discuss our experimental

setup and implementations in Section V. Finally, section VI
shows the results of our approach compared to other models.

II. RELATED WORK

There is past work that studied the performance analysis and
modeling of microservice based architecture for cloud native
applications [9]–[12]. Jindal et al. [9] build a methodology to
identify the maximal rate of requests of a microservice without
violating the Service Level Objective through a performance
model build using microservice sandbox simulations. Khazae
et al. designed a microservice platform to study performance
indicators and then designed an analytical performance model
which can be used for capacity planning for their microservice
platform [11]. However, these past research works focus on
modeling and planning for existing microservice applications
as the current operational point. There are techniques that
profile and measure performance interference in cloud environ-
ments [13], [14] and for cloud-native microservice applications
[15], [16]. However, while we look at the performance impact
due to an interference, we focus on modeling to predict the
performance impact of a change in the cloud environment
rather than detecting the interference in the cloud environment.
In addition, these research works mainly focus on building a
performance model through a simulation-based methodology
or evaluation on an offline VM environment. In Self-Adaptive
systems, run-time performance models are used by the MIAC
to make adaptive decisions when deploying new services.
Wang et al. [17] propose a self-adaptive resource management
framework that uses a combination of a QoS model trained
through historical data on the cloud and PSO algorithm to
perform on-line resource allocation. There has been research
on self-adaptive managers and techniques that use performance
models focusing on cloud-native applications [18]. Machine
learning can also be used to train models to be used for
self-adaptive systems [19]. However, the run-time models
used by self-adaptive managers utilize historical data and can
be unaware of new deployments. There are research works
similar to this concept of deploying exploration mechanisms
[20]–[22] that are in different domains outside of cloud-
native microservice based architectures. The main inspira-
tion for our Look-Ahead Scanner mechanism originates from
the Networking domain rather than cloud and self-adaptive
systems. Chen et al. [23] state the difficulty of quantifying
the effects of changing network characteristics on end-to-
end performance, specifically logical link latency. Logical
Link Latency is the network latency from one application to
another that spans multiple physical links. Chen et al. present
a measurement-based approach to quantifying the impact of
change in logical link latency on end-to-end performance and
utilize delay injection and spectral analysis on an existing
link gradient to explore end-to-end performance in new and
untested configurations. Their method is simple, unobtrusive to
production environments, and can be isolated from the other
transactions in the network. We take inspiration from their
work and apply it to the domain of cloud-native microservice
based applications through a microservice based Look-Ahead
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Scanner mechanism deployed on a cloud environment to
predict the change impact of new deployments to share the
environment.

X2

X1

Current

Operational Region

O0

Target

Operational Region

Ot

Operational Point O0

Operational Point Ot

Distance caused by
Change Impact

Fig. 1: Operational Regions and Points O0 and Target Opera-
tional Regions and Points Ot

III. MOTIVATION AND PROBLEM FORMULATION

In this section, we describe the concepts and definitions
behind the problem and our proposed solution to enable
Change Impact Prediction on existing cloud services. To
illustrate the points, we use the co-location of applications
as a use case; however, the proposed method can be used
in other adaptation scenarios. Assume an application that
runs on a VM instance(s). We can define the Operational
Point as a time snapshot of the application and its en-
vironment: O = (Env,C, P,W ), where O includes the
cloud environment with its set of VMs and configurations,
Env = (VM1...V MK), the set of containers and their
configuration, C = (C1...Cn), the application’s performance
resource utilization P = (R,X,U1, ...UK), where R and X
are the application response time and throughput respectively
and UK is the utilization of VMK . The workload, W , is
represented by the number of requests per second or the
number of simultaneous users.

The operational point is affected by the cloud environment
variability, the changes in performance utilization due to
the workload fluctuations, and other software and hardware
configurations. It is therefore consequential that the application
runs in many operational points that form an operational
region. Figure 1 visualizes the operational points in their
respective operational regions and the distance between the
Current Operational Point and the Target Operational Point
in a simplified two-dimensional space, with x1 and x2 two
variables from P .

1) Current Operational Point O0: The Current Operational
Point, O0, is the operational point of the application at its
normal behavior before any change in the application or cloud
environment occurs. This is where the application functions at
its average day-to-day operation, where we can observe the
application utilization, workload, and end-user metrics at its
normal behavior.

Example. Consider an E-commerce application, a, with an
Env = VMs, VM1 and VM2, running on containers, C=
C1 and C2, which includes front-end server(s) and a back-
end database. The performance utilization of the VM(s) are
U1 = 12%, U2 = 5%, and the response time and throughput at
that point are R = 2ms and X = 108req/s at the day-to-day
browse and purchase workload patterns W = 15 requests per
second. Daily changes in W can move the current operational
point O0 around, but will remain within the operational region
O0 as seen in Figure 1.

2) Target Operational Point Ot: The Target Operational
Point, Ot, is the unexplored operational point that the cloud
environment will move towards from O0 when a change
occurs. For a self-adaptive system, it is important to understand
the performance impact on the production cloud environment
and applications before enacting the change. The cloud envi-
ronment moving towards Ot may have a negative impact on
performance metrics that will ultimately lead to poor QoS. An
example of a target operational point Ot can be a deployment
of a new co-located IoT analytics application, b, to share the
same environment as the e-commerce application.

This IoT analytics application has not been deployed before
on Env, therefore, its effects are unknown. The co-located
deployment would increase the number containers Cn from
n = 2 to n = 5. It changes the utilization of VM1 and VM2
to U1 = 23.54% and U2 = 23.87%, pushing the operations
of the e-commerce application a from O0 to an unexplored
region with target operational point(s) Ot.

Figure 1 shows the current operational point O0 and the
target operational point Ot, in a simplified two-dimensional
space (x1, x2). The two operational points reside in operational
regions, created by cloud variability and workload fluctuations.

3) Change Distance: It is expected that the performance
of the application at the new target operation point depends
on how much load we add to the shared environment. We
can define the change distance DI between the points as
the difference between the current and target VM utilization.
Therefore,

[U t
1...U

t
K ]T = [U0

1 ...U
0
K ]T + DI (1)

where U0
K is the VM utilization at O0 and U t

K is the VM
utilization at Ot. DI is the change distance load vector we
add to U0

K to move the environment to a new operational
point Ot.

Example: Following our example, the distance introduced
by the new deployed IoT application, is DI = [11.54, 18.87]T .

4) Problem Formulation: Since the application is running
around O0, we can collect data and train a model around that
point. A model M(O0, O0), is trained to predict performance
in and around the region O0. We can use this model to predict
performance in Ot, denoted by M(O0, Ot). Our conjecture is
that the prediction will not be accurate since it uses historical
data that do not capture the Ot region. Therefore, we need
to be able to sample around the target point to augment
the data and retrain a new model. A model retrained by
using data points in and around the target point and used
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to predict performance in the training point is denoted by
M(Ot, Ot). Our conjecture is that this model is more accurate
than M(O0, Ot). Our problem can be formulated as follows:

Given an operational point O0 and the distance D to a
target operational point, Ot, find a method to build a new
model around Ot, M(Ot, Ot), such that the existing SLAs are
not breached.

To solve the problem, we propose to build a Look-Ahead
Scanner (LAS) mechanism that causes load perturbations
along the distance from the current operational point towards
Ot. The Look-Ahead Scanner mechanism can be used to
incrementally increase the utilization at O0 in small steps
such that the end-user metric does not exceed a predetermined
threshold that violates the application SLA. In this way, we
are able to collect several data points of future positions that
can capture the impact on existing applications at Ot.

IV. LOOK-AHEAD SCANNER METHODOLOGY

In this section, we discuss the overview of our method-
ology to construct the Look-Ahead Scanner, deploy it on a
production cloud environment along existing applications, and
build a more robust run-time performance model for change
prediction.

Run-time Environment
Env

Cloud Monitor
Probe

Orchestrator

Model Builder

Command(s) Metrics(s)
𝑃 = (𝑅, 𝑋, 𝑈1, ...𝑈K )

Change(s)

Processed
Data-set

Scanner
Controller

Autonomic Manager

Change Impact
Prediction Model

Existing

Application
{a1...an}

Look-Ahead

Scanner

n

Co-Located

Application
{b1...bn}

Virtual Machine

{VM1...VMK}

Containers {C1...Cn}

Fig. 2: Overview of Look-Ahead Scanner in Production

A. Methodology and Architecture Overview

Figure 2 shows the architecture of the methodology of
the LAS mechanism. We have three key components in our
methodology, (1) a Look-Ahead Scanner, (2) a Scanner Con-
troller, and (3) a Model Builder. The Look-Ahead Scanner is
deployed on the VM(s) in Env of O0. The Scanner Controller
is part of the Autonomic Manager and sends configuration
command(s) that instruct the Look-Ahead Scanner(s) on what
to do on the VM(s). The performance metrics produced by

the Look-Ahead Scanner are collected by the Cloud Monitor
and the processed data is streamed to Scanner Controller and
Model Builder. The Model Builder uses the data to build the
run-time performance model(s).

B. Look-Ahead Scanner

The Look-Ahead Scanner explores the performance space of
the existing cloud environment and its services at unexplored
target operational points Ot. It needs to be lightweight and be
able to inject CPU, memory, or I/O perturbations.

Since we target cloud-native application, deployed as a set
of containers C in the cloud environment Env, we can use
containerization to inject our mechanism into the cloud envi-
ronment. Therefore, our run-time Look-Ahead Scanner (LAS)
is a lightweight containerized service that can be deployed
on the cloud environment where cloud-native in-production
application(s) resides. The LAS can induce disturbances on
the cloud environment by stressing resources. As a container,
it can easily be deployed, managed by a Scanner Controller,
independent of the modeled applications life cycle.

C. Scanner Controller

LAS is managed by a Scanner Controller located exter-
nally and separately from the existing cloud environment
and is part of an Autonomic Manager that manages the
system. The Scanner Controller is responsible for managing
the Look-Ahead Scanner container(s) on a single or multi-
VM architecture. By incorporating a Scanner Controller as the
central controller, we are able to orchestrate multiple Look-
Ahead Scanner(s) by sending unique instructions to each of
them. This allows our methodology to mimic applications
deployed on multiple VMs. The LAS has three states that are
managed and controlled by the Scanner Controller: Deployed,
Active, Destroyed. When the LAS is deployed by the Scanner
Controller, it becomes active and awaits instructions from
the Scanner Controller. The Scanner Controller instructs the
LAS(s) on which resources to stress, the length of time for
each stress, and in what increments to increase the stress
value, supporting multi-resource control and tunable resource
perturbation. Constraints can also be implemented by the
Scanner Controller when handling the LAS. The Scanner
Controller can periodically check the outputs produced by
LAS, and be able to stop or modify the LAS if the constraints
are violated. When the constraints are violated or the LAS has
completed its perturbations, then the Scanner Controller can
destroy the LAS from the run-time environment.

D. Cloud Monitor

The Cloud Monitor collects the utilization metrics, UK ,
of the virtual machine(s) VMK and the container(s) Cn,
such as the CPU Utilization, memory Utilization, I/O, the
applications’ response time, R, and throughput, X , required by
the Service Level Agreement. It can use existing cloud-native
instrumentation to minimize overhead. It streams measured
data to the Model Builder.
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E. Performance Model Builder

The Model Builder is a framework that can build run-time
performance models for use in self-adaptive scenarios. The
Model Builder produces a Change Impact Prediction Model
that can be used to predict performance impacts at the target
operational point Ot. In this paper, we evaluate performance-
specific models, such as Queuing Network Models (QNM),
Machine Learning (ML) models, and Linear Regression Mod-
els (LM), however other models can work as well.

1) Queuing Networked Models: represent the software and
hardware components of a system as a network of queues.
Co-locating two applications can be modeled as follows.
Assume an existing in-production application a that runs on
its own cloud server and does not share that server with other
application(s). The end-to-end delay or response time of one
request is given by the processing time of the application
software and hardware resources, plus waiting time at the same
processing resource. Each hardware resource k can be used to
calculate the Demand D of application a, Dk,a. Without loss
of generality, the waiting time can be measured by a state
variable of the resource k, called utilization Uk. In absence of
other applications on the cloud server, the utilization of k is
produced by application a, that is Uk = Uk,a. Using the Open
Mean Value Analysis Model from Queuing Networks [24], the
end-to-end delay of an application Ra can be expressed as:

Ra =

K∑
k=1

Dk,a

1− Uk,a
(2)

where k=1 ... K denotes the software and hardware resources
used by the application a.

A co-located application b will impact the in-production
application a through utilization Uk, which can be expressed
as:

Uk = Uk,a + Uk,b (3)

where Uk,b is the additional utilization brought by the applica-
tion b. With application b now sharing the cloud environment,
the response time of application a will become:

Ra =

K∑
k=1

Da,k

1− (Uk,a + Uk,b)
(4)

From Equation (4), we can infer that we can use utilization as a
proxy for moving the application to a target operational point.
The operational point O0 is characterized by Uk,a and Ot by
Uk,a + Uk,b, while the distance DI between the operational
points is Uk,b. Additional co-located application(s) can also
be implemented in Equation(s) (3)-(4) to model the impact on
application a. A QNM model can be tuned at the operational
point O0 ( cf. Eq. (2)) by sampling the throughput X and
the utilization U and estimating D using the Kalman filter
[25], [26]. Once calculated, D can be used to evaluate the
response time at point Ot using Equation (4). The assumption
is that the demands Dk,a do not change with operational
points. The QNM model tuned at O0 to evaluate the response

time at Ot is defined as QNM(O0, Ot). A similar approach
can be used to tune a QNM model in Ot. LAS can generate
controlled perturbations, Kalman filter will estimate D by
sampling through X and U of the application in Ot. This
model tuned at Ot to evaluate the response time at Ot is
defined as QNM(Ot, Ot).

2) Machine Learning Models: model the system as a
black box. We can explore many models, [27], to explore a
wide variety of configurations, parameters, and options. Using
the dataset provided by Cloud Monitor, periodically or on-
demand, we can train multiple ML models. The features used
for training are Uk, k=1 ... K and the predicted metric is Ra.

Ra = f(U1..UK) (5)

We are able to build two types of ML models. The initial
model, ML(O0, Ot), is defined as a ML model trained using
the dataset where application a is at O0 to predict the Ra at
Ot. Using the LAS mechanism, we can build ML(Ot, Ot)
which is defined as the ML model trained using the dataset
generated by the LAS to move the application towards Ot and
predict Ra at Ot.

3) Linear Regression Models: make the assumption that the
systems are linear around the operational point. We build gra-
dient models, that is functions that approximate the estimated
metric Ra with a linear combination of utilization gradients.
That is equivalent to approximating Equation (2) with a first-
order Taylor series [28]:

Ra = RO0
a +

K∑
k=1

mk ∗∆Ra/∆Uk (6)

where RO0
a is the response time in the operational point O0,

mk are the coefficients to be identified and ∆Ra are the
changes in response time caused by LAS ∆Uk changes in
utilization. To identify mk, we inject changes around the target
operational point. The initial model, LM(O0, Ot), is defined
by building the model with a dataset at O0 to predict the
response time at Ot. The LAS model, LM(Ot, Ot), is defined
by building the model with a dataset generated through the
LAS at Ot to predict the response time at Ot.

F. Look-Ahead Scanner Run-Time Algorithm

We now describe how we can use LAS to explore what if
we move the operational point to Ot. As such, LAS acts as
a proxy for a co-located application that is to be deployed on
the cloud environment or for any other run-time performance
adaptation we would like to make. The main motivation of
our methodology is to be able to provide a more accurate run-
time performance model on the existing cloud environment
and application while staying within the SLA. Essentially, we
need to find the balance between accuracy, low overhead, and
keeping the end-user delay within the SLA requirements.

To start with, we assume that we already have a model
that is valid at the current operational point, O0, utilized by
the MIAC. Our model does not have data points for Ot, and
therefore it is uncertain that the current model can predict
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performance around that point. In this paper, LAS follows a
Rolling Hill algorithm [29] to sample new data points toward
Ot. However, the algorithm can be replaced with another
algorithm.

Algorithm 1 LAS Data Collection

1: Input O0, DI = [DI1..DIK ], ∆U , Rthreshold

2: Output DS = {}
3: Start LAS(s) in Env
4: for i=1 to K do
5: Instruct LAS to add ∆U load to VMK within distance

DIK
6: Read Pm = (Rm, Xm, Um,1...Um,n)
7: if Rm > Rthreshold then
8: Stop LAS(s) and EXIT
9: else

10: Add Pm to DS
11: end if
12: end for

The Scanner Controller deploys the LAS on the exist-
ing production environment where our running application a
resides and where other applications b will be co-located.
We define a threshold value, Rthreshold, below the SLA
requirements, that LAS cannot exceed in its exploration. We
can express Rthreshold as:

Rthreshold = RSLA ×X% (7)

where X is a configurable value, for example, 80%. This allows
us to deploy the LAS dynamically at run-time and explore the
operational points of the exact production environment and its
configurations without breaching SLAs.

Algorithm 1 is executed by the Scanner Controller. It has
the following inputs: the current operational point O0, the
distance to Ot, DI = [DI1..DIK ], a load increment ∆U and
an upper limit for the response time, Rthreshold. We select
our Rthreshold based on the X% value that application a will
not exceed while the LAS is running. The LAS will move the
application a towards Ot to collect the data points to be added
to the output dataset, DS = ().

The Scanner Controller begins the process by deploying
LAS and then instructing LAS to induce each of the pertur-
bations on the VMs. LAS will generate additional ∆U load
on the VM(s) at each step of the algorithm (line 5), where
∆U is the incremental increase in utilization. In each step,
the Scanner Controller collects measured performance metrics
(line 6), P , including the measured response time, Rm and
measured utilization values, Um,1...Um,n, and adds them to
the output dataset, DS. Rm is compared with the threshold re-
sponse time, Rthreshold, (line 7) and if the measured response
time, Rm, is under the threshold value, Rthreshold, then the
Scanner Controller continues the algorithm. However, if Rm

is greater than Rthreshold, then the Scanner Controller stops
the LAS and removes it from the VM(s).

This process can be repeated multiple times, and DS can
then be continually updated and passed to Model Builder to

build a more robust and accurate model. In this work, we do
not focus on the optimal exploration of the points; we focus
only on feasibility. Other algorithms can be used to explore
the space within DI in a more efficient or optimized approach.

V. EXPERIMENTAL VALIDATION

In this section, we describe the testbed setups and ex-
periments that answer our research questions. We run our
experiments in the AWS Cloud on EC2 VMs. We utilized
m4.large VMs running Ubuntu 18.04 and Docker 20.10.12.
Each of the VMs was allocated 2 VCPUs, 8 GB of memory,
and 20GB of Elastic Block storage. The first set of experiments
runs an in-production application a and the Look-Ahead
Scanner on one and two VM deployment configuration. The
second set of experiments runs the application a, the co-located
application b and the Look-Ahead Scanner(s) on one and two
VM configurations.

A. Test-bed Setup

1) In-Production Application a: As the in-production appli-
cation a, we use a Web benchmark application called Acme-
Air [30] developed by IBM. Acme-Air is an implementation
of a multi-tier airline e-Commerce application composed of
two service components. The application-tier component is a
front-end Node.JS server connected to a data-tier component,
a MongoDB Database. These components are deployed as
Docker containers that can run on different cloud platforms.

2) Co-locating Application b: The application b we in-
tend to co-locate with Acme-Air, is an IoT Air Quality
Monitoring application that utilizes an MQTT workload. The
IoT application is composed of three container components:
Mosquitto, NodeRed and InfluxDB. Mosquitto [31] is an open
source message broker for the MQTT protocol for sensors to
publish and subscribe messages. NodeRed [32] is a flow-based
development tool built in Node.JS to connect APIs, hardware
services, and sensors. InfluxDB [33] is an open source time
series database platform. Air quality sensor data is published
through Mosquitto. NodeRed collects and processes data from
Mosquitto whenever it is published, and the sensor data is then
stored in InfluxDB to be viewed. The in-production and co-
located application(s) have been selected in our experimen-
tations as they are well-known industry type representative
application(s) [34], [35].

3) Look-Ahead Scanner: The Look-Ahead Scanner was
built and deployed as a lightweight Node.JS [36] application,
and its dependencies are containerized to be deployed on the
Docker platform. The Node.JS application interacts with Stress
Tools [37] that are packaged inside the container. For the
Cloud Monitor, we deploy Prometheus to monitor the VM(s).
Prometheus [38] is an open-source monitoring system and
time-series database that can collect performance metrics at
run-time. We utilized three models in our experimentation. We
use scikit-learn [39], a machine learning library for the Python,
to build Regression Models. We use Opera [40] to build our
QNM models. We use the H20 AutoML frameworks [27] to
build our AutoML models. The H20 AutoML frameworks train
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and evaluate a variety of ML models based on the dataset
from our LAS, and outputs the best performing model. The
framework considers several ML algorithms such as Deep
Neural Networks, Gradient Boosting, XGBoost and Stacked
Ensembles.

4) Operational Points and Regions: The workloads W will
emulate different loads and load mixes for the in-production
application a and the co-located application b, Acme-Air and
IoT Air Quality Monitoring, respectively. We use Httperf as
the workload generator for Acme-Air. The Acme-Air workload
represents a default workload mix that is provided by the
Acme-Air application. To validate the answers to our research
questions, we consider three current operational regions for
the application a: light, medium and heavy. The light workload
is within 5 to 15% CPU Utilization, the medium workload is
within 15 to 20% CPU Utilization, and the heavy workload is
within 40 to 60% CPU Utilization. The regions are covered
in step sizes that emulate different current operational points,
O0: for the light and medium workloads the step size is
approximately 5 to 8% CPU Utilization, and the step size
for the heavy workload is 10 to 12% CPU Utilization. For
the Air Quality Monitoring Application, we use Jmeter [41]
as the workload generator. The workload for the Air Quality
Monitoring application is MQTT-based and, to cover many
target operational points, it is increased approximately at a
step size of 10% CPU Utilization. We configured each Httperf
and Jmeter workload to run for a duration of x = 100 seconds
and for N = 100 iterations so that we account for the cloud
variability. The value of x is configurable depending on the
type of application and cloud environment for experimentation.

B. Experiment Setup

To account for deployment variability, we consider that each
application is deployed in two configurations. The 1VM setup
hosts the Node.JS and MongoDB containers of Acme-Air on
a single VM instance. The 2VM setup hosts the Node.JS and
MongoDB containers on two separate VM instances. In the
remainder of the section, the VM that hosts Node.JS will
be VM 1, and the VM that hosts MongoDB will be VM 2
for the 2VM setup. The Look-Ahead Scanner(s) is deployed
on these VMs to inject controlled load. For our AutoML
machine learning model building, we do an 80/20% split of
our dataset for the testing and training data.The training data
for our models consists of the CPU utilization of each of the
containers, and the host CPU Utilization of each CPU core.

1) Experiment One: Feasibility of the Performance Impact
Model: Our first experiment answers RQ-1 by comparing the
prediction accuracy of change models built in the operational
regions of O0 with those build around the target region Ot.
The distance between O0 and Ot is variable and emulated by
an utilization increase on the VMs. In this experiment, we only
show the Machine Learning Models results; the other models
perform worse, as will be evident in the second experiment.
An ML(O0, Ot) is a model trained around the operational
point O0 used to predict performance metrics in Ot; An
ML(Ot, Ot) is a model trained using sampled data from both

O0 and Ot regions and used to predict performance metrics
in Ot.

To train ML(O0, Ot), we run Acme-Air application running
on the 1VM and 2VM setup in three operational regions (light,
medium and heavy workloads) and collect datasets in these
regions. The datasets are then used to train the ML models in
these regions for the 1VM setup and 2VM setup. We then use
ML(O0, Ot) to predict the response time in the target Ot,
outside the current operational regions. The models use as
input the container and host utilization distances to the target
operational points. The results will be presented in Section
VI-A.

To train ML(Ot, Ot) models, we use data generated by
Algorithm 1. The algorithm will assume several target points,
generate new dataset and combine it with dataset in the O0

region. In our experiment, we set X% of Rthreshold value to
30%, thus Rthreshold will not exceed 30% when the LAS is
injecting the disturbances. We set the resource that our LAS
will stress as the CPU, and ∆U in increments of 3% in DI . We
selected UCPU in Ot as 70% CPU utilization as the maximum
the LAS will affect the Host Utilization of VM in Env, thus
DI = (0, 3, 6...70). The LAS datasets are used as input to
build the ML(Ot, Ot) model when changing the operational
point from light, medium, and heavy operational regions. The
results are presented in Section VI-A.

2) Experiment Two: Performance Impact Model for Co-
location of a New Application: Our second experiment an-
swers RQ-2 by evaluating the prediction accuracy of the
change models when a new co-located application is deployed
on the same Env as a. The distance between the operational
region O0 to the operational region Ot is caused in this
case by the deployment of the co-located IoT Air Quality
application. Since Ot is induced by the co-located application
b, the operational region of Ot will be more complex than
experiment one where the O0 was artificially emulated by an
utilization increase. We run this experiment in 3 steps:

1) We first run the IoT application in isolation and collect
its performance profile, that is, the container utilization
for different workloads. In this way, we determine the
distance DI in the utilization space.

2) We use IoT application DI and run the LAS algorithm
to build prediction models LM(Ot, Ot), ML(Ot, Ot)
and QNM(Ot, Ot), similar to experiment 1.

3) We then deploy the IoT Application alongside Acme-
Air and run both the Httperf and Jmeter workloads
simultaneously and measure the response time of Acme-
Air and IoT applications.

4) We compare the metrics predicted by the model prior
to deployment with the measured metrics after the
deployment

In our 1VM setup, we deploy the containers of the IoT Ap-
plication alongside Acme-Air. Similar to experiment one, the
LAS stress the CPU at increments of 3% in DI . In our 2VM
setup, we deploy the NodeRed container with the Acme-Air
Node.JS Web Server container on VM 1 and the InfluxDB +
Mosquitto containers with the Acme-Air MongoDB container
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on VM 2. Based on the performance profile (cf. Step 1) of
the IoT application, the InfluxDB container has the highest
utilization, followed closely by the NodeRed container, while
the Mosquito container has the lowest utilization. We run
LAS to have different perturbations representing NodeRed
on VM 1, and InfluxDB + Mosquitto and VM2. The LAS
on VM 1 will start at 5% CPU Stress and increase the
perturbation by 4%, and the LAS on VM 2 will start at 6% and
increase the perturbation by 5%, thus DIVM1 = (0, 5, 9...70)
and DIVM2 = (0, 6, 11...70). These incremental increases
has been determined by the performance profile of the IoT
application and these values can be configurable. The LAS
datasets are used as input to build LM(Ot, Ot), ML(Ot, Ot)
and QNM(Ot, Ot) models when changing the operational
point from light, medium, and heavy operational regions of the
IoT Application. The selected benchmark application(s) and
the cloud deployment are industrial strength, and we covered
a wide range of workload intensities to emulate extreme
situations. The results are presented in Section VI-B. The
datasets for both experiments are available on Github1.

VI. RESULTS AND DISCUSSION

In this section, we evaluate the accuracy of our M(O0, Ot)
and M(Ot, Ot) performance impact model(s) by comparing
it with the actual deployment and discuss the results. We
evaluated the effectiveness and accuracy of our models by
using Mean Absolute Percentage Error (MAPE). As discussed
in our experiment setups in Section V, we compare the
Rmeasured of application a and application b sharing the
same cloud environment with the Rpredict outputted by our
M(O0, Ot) and M(Ot, Ot) models. MAPE is defined as:

• Let n denote the total number of records observed
• Let Rmeasured,i denote the actual response time, ob-

served for record i
• Let Rpredict,i denote the predicted response time,

Rpredict, made for record i

MAPE =
1

n
∗

n∑
i=1

|Rmeasured,i −Rpredicted,i|
|Rmeasured,i|

∗ 100 (8)

Each record i is the combination of application a and appli-
cation b or LAS with their respective workload(s), workload
intensities and step size within the workload(s). We evaluated
the three models using historical data at normal operational
point, O0, used by the M(O0, Ot) models, and the LAS data
at target operational point, Ot, used by the M(Ot, Ot) models
to compare the MAPE of each model.

A. RQ-1 Results: Feasibility of the Performance Impact Model

Figure 3 and Figure 4 present the MAPE violin plots for
models built with O0 and Ot data. On the violin, the horizontal
bar represents the median MAPE across all operational points
for different load types. The lower the median, the shorter
and wider the violin, the better. The ML(Ot, Ot) models

1https://github.com/yar-yorku/Change-Impact-Prediction-Datasets
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Fig. 3: Prediction at Ot for 1VM Deployment
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Fig. 4: Prediction at Ot for 2VM Deployment

outperforms the ML(O0, Ot) models for all the workload
types and VM deployments. The MAPE of ML(Ot, Ot) has
significantly decreased from the ML(O0, Ot) and there is
less variability within the MAPE values. This shows that the
ML(Ot, Ot) model can predict response times with higher
accuracy and more consistently than the ML(O0, Ot) models.
At heavy loads, the models have higher variation since the
VMs are closer to saturation. Conforming to Equation (4),
when close to saturation utilization, 1, the denominators tend
to 0, explaining the variability.

Table I presents a closer look at the MAPE values as the

ML
(O0, Ot)

ML
(Ot, Ot)

WL Utilization
at O0

Utilization
at Ot

MAPE MAPE

Light 0 - 5 % 10 - 20 % 12.04 6.05
20 - 30 % 22.75 2.39
30 - 40 % 25.77 3.09
40 - 50 % 27.22 3.40

5 - 10 % 10 - 20 % 7.04 4.40
20 - 30 % 13.44 2.94
30 - 40 % 17.60 3.72
40 - 50 % 26.59 3.56

Medium 15 - 20 % 20 - 30 % 12.08 4.18
30 - 40 % 14.21 2.09
40 - 50 % 18.70 1.26

20 - 25 % 20 - 30 % 6.59 2.13
30 - 40 % 11.02 1.85
40 - 50 % 16.41 2.37
50 - 60 % 18.87 3.24

Heavy 25 - 30 % 30 - 40 % 2.49 3.69
40 - 50 % 5.93 5.07
50 - 60 % 13.41 28.34

30 - 40 % 40 - 50 % 25.58 10.12
50 - 60 % 32.36 8.19

TABLE I: Prediction at Ot for 1VM Deployment
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distance DI moves away from O0. ML(O0, Ot) model can
accurately predict the response time when the distance of Ot is
closer to O0. However, as we move the Ot further away from
O0, the performance of the ML(O0, Ot) model decreases,
while the ML(Ot, Ot) model has a consistently low error until
highly saturated points in the heavy workload. Experiments on
2VM deployments shows similar results.

RQ-1: Based on experimental results, models built with only
historical data do not extrapolate well beyond the operational
points; the accuracy error, MAPE, increases with the distance
from the operational point. By incorporating the data produced
through the Look-Ahead Scanner (LAS), it is feasible to build a
model that can be used to predict end-user metrics at different
unexplored operational points, Ot. LAS-based models, compared
to models built on historical data, reduce the MAPE by as much
as 24% (e.g. from 27.22% to 3.40% in Table I). Overall, Machine
Learning outperforms Queuing and Regression models.
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Fig. 5: Prediction of Error Improvement of Co-locating Ap-
plications on 1VM Deployment

B. RQ-2 Results: Effectiveness of LAS to Predict Performance
Impact of Co-location

We now compare the prediction accuracy of the models
built in O0 with the LAS models built in Ot when we deploy
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Fig. 6: Prediction of Error Improvement of Co-locating Ap-
plications on 2VM Deployment

a real IoT application that shares the same VMs as AMCE-
Air. Figure 5 and Figure 6 compare the distribution of the
accuracy error, MAPE, for all the models built in O0 and Ot.
For the 1VM deployment in Figure 5, all M(Ot, Ot) models
outperform M(O0, Ot) models and have significantly less
variability at different Ot. This shows that M(Ot, Ot) models
can consistently predict more accurately the impact of changes
when co-locating applications. For the 2VM deployment co-
location in Figure 6, the ML(Ot, Ot) and QNM(Ot, Ot)
models outperform their respective M(O0, Ot) models as
well. The LM(Ot, Ot) outperforms the LM(O0, Ot) in the
light workload, but there is an insignificant difference in the
medium workload. The QNM models have the most vari-
ability of MAPE distribution compared to the other models.
The ML(Ot, Ot) outperforms the ML(O0, Ot) models at the
medium and light workloads, and shows the least variability
of MAPE distribution. While there is more variability in the
heavy workload for 2VM deployment, all M(Ot, Ot) models
have a smaller first and third quartiles, and median line.

Table II and Table III show MAPE at different co-location
operational regions. The light workload can be seen in the
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QNM LM ML

(O0, Ot)
(Ot, Ot)
(LAS) (O0, Ot)

(Ot, Ot)
(LAS) (O0, Ot)

(Ot, Ot)
(LAS)

Utilization
at O0

Utilization
at Ot

MAPE MAPE MAPE MAPE MAPE MAPE

0 - 5 % 10 - 20 % 3.32 20.80 2.77 2.31 5.97 13.43
40 - 50 % 16.32 10.68 17.09 8.64 36.34 4.29
50 - 60 % 21.00 1.82 26.53 9.12 50.12 7.30
60 - 70 % 31.00 11.84 34.46 6.93 28.12 16.32

5 - 10 % 20 - 30 % 8.00 13.24 2.07 8.86 2.87 25.91
40 - 50 % 3.29 5.18 14.19 4.03 24.07 11.67
50 - 60 % 15.16 7.88 24.37 4.78 40.23 2.09
60 - 70 % 26.05 11.70 32.62 4.22 34.95 11.78

15 - 20 % 20 - 30 % 12.54 18.21 2.79 4.46 4.01 5.53
40 - 50 % 3.29 5.32 10.80 9.54 6.72 12.09
50 - 60 % 9.60 5.03 13.33 13.50 8.18 11.16
60 - 70 % 12.35 2.29 19.31 10.53 13.70 4.55

20 - 25 % 20 - 30 % 6.18 18.88 1.56 2.09 1.88 4.52
40 - 50 % 26.18 6.50 18.91 4.29 17.25 4.46
50 - 60 % 31.80 7.91 24.60 5.04 22.20 9.49
60 - 70 % 38.61 19.83 32.23 10.26 29.35 17.90

20 - 30 % 40 - 50 % 38.60 27.40 22.70 25.36 25.84 26.07
50 - 60 % 62.89 45.54 37.46 36.17 42.82 27.51
60 - 70 % 73.22 62.61 52.52 49.82 61.45 42.88

30 - 40 % 40 - 50 % 59.69 38.54 44.14 44.22 55.63 40.14
50 - 60 % 81.83 72.30 74.10 73.10 81.17 72.11
60 - 70 % 91.06 82.05 86.18 85.33 90.62 86.10

TABLE II: Prediction of Error Improvement of Co-locating
Applications on 1VM Deployment

QNM LM ML

(O0, Ot)
(Ot, Ot)
(LAS) (O0, Ot)

(Ot, Ot)
(LAS) (O0, Ot)

(Ot, Ot)
(LAS)

Utilization
at O0

Utilization
at Ot

MAPE MAPE MAPE MAPE MAPE MAPE

0 - 5 % 10 - 20 % 11.04 2.13 7.09 5.69 7.04 2.87
40 - 50 % 6.91 6.82 10.61 1.96 11.33 1.76
50 - 60 % 14.67 2.33 13.68 3.41 13.23 3.15
60 - 70 % 21.19 2.35 16.46 3.00 15.54 3.21

5 - 10 % 20 - 30 % 2.57 2.55 2.25 3.78 2.45 4.82
40 - 50 % 2.55 2.45 3.65 4.11 3.14 4.28
50 - 60 % 6.73 2.09 6.39 4.70 6.59 1.92
60 - 70 % 10.78 6.35 12.18 1.73 11.42 2.35

15 - 20 % 20 - 30 % 7.60 7.70 1.83 1.81 3.71 3.79
40 - 50 % 15.95 6.77 4.32 4.74 11.53 2.63
50 - 60 % 11.95 2.81 3.05 3.05 11.12 3.12
60 - 70 % 11.95 7.62 4.51 4.98 14.27 3.08

20 - 25 % 20 - 30 % 2.85 2.80 2.46 2.47 4.35 2.93
40 - 50 % 6.45 6.55 2.95 3.20 10.93 2.38
50 - 60 % 1.97 2.14 2.43 3.29 13.08 1.53
60 - 70 % 2.00 2.90 2.93 3.50 14.57 2.82

20 - 30 % 40 - 50 % 1.71 3.10 6.30 4.66 5.25 1.74
50 - 60 % 10.26 5.83 11.51 6.29 8.91 4.19
60 - 70 % 10.23 3.30 13.29 5.38 10.49 4.88

30 - 40 % 40 - 50 % 8.92 4.88 16.17 13.34 15.18 11.58
50 - 60 % 21.45 10.76 17.89 11.58 15.70 8.23
60 - 70 % 15.63 3.89 23.13 14.90 20.16 11.95

TABLE III: Prediction of Error Improvement of Co-locating
Applications on 2VM Deployment

rows where the Utilization of Acme-Air at O0 column is
at 0 - 5% and 5 - 10%, the medium workload is at 15 -
20% and 20 - 25%, and the heavy workload is at 20 - 30%
and 30 - 40%. When the cloud environment’s load moves
further towards the unexplored operational points at 40 -
50% and beyond, the models trained at Ot outperform the
models trained at O0 for most of the Ot levels. For the 1VM
deployment, the ML(Ot, Ot) outperforms the ML(O0, Ot)
model from 11.46% up to 42.82%. At heavy load, close
to saturation points, similar to Experiments 1, all models
have high variability in predicting the effects of co-location.
Overall, the LAS models are more robust, especially when
covering the unexplored operational points at higher CPU
ranges.

RQ-2: Experimental results show that by incorporating the data
produced through the Look-Ahead Scanner, we can build a model
that is consistently more accurate at predicting the effect of
co-locating applications. This is especially noticeable in higher
utilization values of the shared infrastructure when the target
operational point is further from the current point. The LAS-based
models compared to models built on historical data reduce MAPE
by as much as 42.82% (e.g. from 50.12% to 7.30% in Table II).
Overall, Machine Learning outperforms Queuing and Regression
models. Experiments also show that pushing the applications close
to saturation points (heavy load) yields uncertain behavior.

C. Threats to Validity
We note that an internal threat to validity is the balance of

data points between the historical data and the Look-Ahead
Scanner. Increasing or decreasing the amount of data points
of the Look-Ahead Scanner in the training/testing data of
AutoML may affect the accuracy of the model, such that
the model may begin over or under estimating. An external
threat to validity is that our experiments were conducted on a
single availability zone in the AWS cloud. We do not consider
deployment across multiple availability zones or other cloud
platforms.

D. Computational Complexity and Overhead
Model Number of Samples Training Time
LM K*2*v 0.00046 ms
QNM K*5*v 1.266 s
ML K*DI*v / ∆U 190 s

TABLE IV: LAS Complexity
Complexity. Table IV shows the sampling and model build-

ing complexity. For LM, we need to collect two points for
each derivative, for all K VMs, therefore the number of
samples is K*2 samples. For LQM, when tuned with Kalman
filter, practically, it converges in less than 5 samples [25] for
each VM, therefore the number of samples is 5*K. For ML,
the number of samples calculated based on Algorithm 1 is
K ∗ DI/∆U ; where ∆U is the chosen increment in Alg. 1.
∆U is 3% in our experiments. To account for the variability
of the cloud, the sampling can be repeated v times. In our
experiments, v was 4. The 3rd column in Table IV shows the
average training time for our models.

Overhead. Besides the controlled load introduced as per
Alg. 1, there is no additional overhead. The Autonomic Man-
ager (cf. Fig 2) runs externally and we use the instrumentation
available on containers.

VII. CONCLUSION

In this work, we propose a method and a controllable
Look-Ahead Scanner (LAS) that can induce stress on an
in-production cloud-native application while keeping end-
user metrics within the SLA. Through this, we are able to
collect the performance data of the cloud-native application
at unexplored operational points. Using the LAS dataset,
the performance models outperform the models built with
historical data. New models can help better runtime adaptation.
Further work includes optimizing the data collection process
and considering more features (e.g. i/o, memory utilization).
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