
Subscriber-Driven Cloud Interference Mitigation for Network Services

Joydeep Mukherjee
University of Calgary

Email: jmukherj@ucalgary.ca

Diwakar Krishnamurthy
University of Calgary

Email: dkrishna@ucalgary.ca

Abstract—Network services, e.g., video streaming
services, are increasingly being deployed on public
cloud platforms. Such services often employ horizontal
scaling where a group of resource instances, e.g., virtual
machines (VMs), handle the incoming workload. The
response time of such services is often affected by
interference, i.e., contention among resource instances
belonging to multiple cloud subscribers for shared
cloud resources. Most commercial cloud platforms do
not support built-in mechanisms to detect interference
and mitigate its impact. This paper outlines a solution
called PRIMA that subscribers of such platforms, i.e.,
network service operators, can deploy to ensure a
specified end user response time target is met even in
the face of fluctuations in workload and interference.
PRIMA uses automated and controlled performance
tests to build models that capture the joint impact
of workload and interference on the response time of
each resource instance employed by a service. PRIMA
adapts the system to changing workload and inter-
ference conditions by using these models at runtime
to control the number of instances in the system
and the distribution of load among these instances.
Unlike existing subscriber-oriented interference miti-
gation techniques in literature, PRIMA provides an
explicit mechanism to guarantee that the specified
response time threshold is met at every resource in-
stance assigned to a service. Furthermore, in contrast
to these approaches PRIMA can help an operator avoid
using more instances than necessary for handling the
observed workload and interference.

I. Introduction
Public cloud providers often implement resource vir-

tualization in their data centers by running multiple
resource instances, e.g., virtual machines (VMs), on a
shared physical machine (PM). Such virtualization can
cause performance interference when multiple instances
belonging to different cloud subscribers compete with one
another for a shared PM resource, e.g. the processor or
network bandwidth [1], [2], [3], [4], [5]. Interference can
be especially problematic for interactive network services.
Specifically, the occurrence of interference can be unpre-
dictable. When it happens, interference can manifest itself
as higher response times, i.e., poor Quality of Service
(QoS), leading to frustration for end users of such services.
For example, users of a video streaming application hosted
on the cloud can experience unexpected drops in video
quality due to sudden network contention on PMs [6].

Unfortunately, commercial cloud platforms typically do
not support built-in mechanisms to continuously detect
and mitigate the adverse impact of interference. Conse-
quently, subscribers of such platforms need to deploy their

own mechanisms to ensure a specified end user response
time target is continuously met by each of their instances
even in the presence of fluctuations in interference as well
as service workload. However, developing such mechanisms
is challenging since a cloud subscriber cannot directly
determine the extent of interference suffered by their
instances from instances belonging to other subscribers.
Due to the challenges in detecting interference and

quantifying its impact on performance, subscribers often
employ simplistic interference-agnostic performance man-
agement techniques that can suffer from many drawbacks.
Specifically, performance problems are typically mitigated
using techniques such as load balancing and auto scaling.
A cloud subscriber can employ load balancing to distribute
incoming requests between a set of instances available
to the subscriber, collectively called the load balancing
group (LBG). Load balancing in public cloud platforms
works in conjunction with techniques such as auto scaling
that can expand or shrink the LBG as required. Common
load balancing algorithms supported by commercial cloud
platforms, e.g., round robin and least connections [7], do
not explicitly take into account how individual instances
within the LBG are impacted by interference at any
given point in time. Consequently, the incoming workload
can be distributed in an ineffective manner leading to
performance degradation. For example, consider a system
with 2 identical instances where one instance is currently
suffering from interference while the other is not. A round
robin policy can incorrectly distribute equal workload
to these instances, leading to poor performance in the
instance with interference.
A key challenge in realizing effective interference-aware

load balancing and auto scaling strategies is determining
the amount of workload an instance can handle given the
current extent of interference at that instance and the
response time target. We present a model-based technique
called Performance Interference Management Approach
(PRIMA) that addresses this challenge. PRIMA exploits
data-driven models derived by deploying a subscriber-
oriented interference estimation system developed in our
previous work [4]. This system, referred to as the probe,
reports a metric called the Severity Factor (SF) for an
instance that represents the severity of response time
degradation experienced by that instance due to inter-
ference. First, we build a response time model that can
predict the mean response time of an instance given the
workload assigned to the instance and its SF value. We also

978-1-5386-2542-2/18/31.00B)2018IEEE

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:48:08 UTC from IEEE Xplore. Restrictions apply.

build an interference model that can estimate how the SF
value at any given instance changes as a function of the
instance’s current SF value and the workload assigned to
that instance. Next, we implement a runtime PRIMA con-
troller that iterates between these two models to calculate
the optimal split of incoming traffic between the current
instances in the LBG such that an operator-specified mean
response time threshold is satisfied at each instance. If the
current instances in the LBG are insufficient for accommo-
dating the system workload at their present interference
levels, PRIMA can use the models to scale out. Similarly,
PRIMA can scale in when instances are not needed.

The key novel contributions of our work with respect to
other subscriber-oriented interference mitigation solutions
proposed in literature [8], [9] are as follows. First, unlike
these solutions PRIMA provides an explicit mechanism
to guarantee that the target response time requirement
is met by every instance in an LBG. Second, existing
approaches do not focus on automatically expanding and
shrinking the LBG in response to fluctuations in workload
and interference. In contrast, PRIMA’s models ensure
that the system will use only the minimum number of
instances needed to achieve the response time target given
the observed workload and interference conditions. Finally,
PRIMA does not require monitoring of hardware counters
[10] or service response times [11], which can incur a
prohibitive overhead in heavy load and heavy interference
scenarios. Experiment results obtained in our private cloud
setup indicate that PRIMA is agile in responding to
fluctuations in both workload and interference.

II. Related Work
Previous studies have devised techniques that cloud

providers can exploit to detect and mitigate the im-
pact of interference [11], [12]. However these techniques
rely on collecting detailed PM-level metrics which cloud
subscribers typically do not have access to. Compared
to studies proposing provider-driven solutions, very few
studies have focused on subscriber-driven solutions for
interference mitigation. Maji et al. propose an interference-
aware load balancing technique called ICE that is tar-
geted towards public cloud subscribers [8]. ICE limits the
workload assigned to instances suffering from interference
such that the CPU utilization of these instances is below
a certain statically set threshold. In contrast to PRIMA,
ICE does not provide an explicit mechanism for maintain-
ing response times below a specified target. Also, since
it focuses only on load balancing ICE does not support
automated scale in and scale out of an LBG. Javadi et
al. develop a subscriber-driven load balancing technique
called DIAL that considers the impact of interference [9].
In contrast to PRIMA, DIAL does not support automatic
scale out. Consequently, while it can minimize response
time at each instance in an LBG, it cannot guarantee that
this minimum value will be below an operator-specified
threshold. Furthermore, unlike PRIMA, DIAL does not

support scale in to avoid using more instances than nec-
essary to satisfy the desired response time target.

III. PRIMA
A. Overview of PRIMA
A system managed by PRIMA consists of a load bal-

ancer, an LBG, the probe system [4] deployed on each
instance in the LBG, and the PRIMA controller. The
controller determines the number of instances in the LBG.
It also controls how the load balancer distributes incoming
workload to these instances. The LBG scaling and load
balancing are controlled such that the mean request re-
sponse times are maintained below an operator-specified
threshold Rth in all instances while using the least possible
number of instances. Although PRIMA can accommodate
different types of workloads, we consider network intensive
workloads in this paper.
The probe system detects and quantifies interference at

an instance in the LBG over a sampling period. Due to our
focus on network intensive services, the probe is configured
to estimate contention for a PM’s network bandwidth. The
probe periodically reports to the controller an SF value
SFm for any given instance m. SFm quantifies the impact
of the network interference experienced by the instance
over the sampling period.
For the same sampling period, the controller measures

the total incoming workload. Specifically, each instance m
reports to the controller its network utilization Um. Um is
reported as a percentage of the total network bandwidth
available to m. The controller aggregates the Um values
reported by the instances in the LBG to obtain the total
workload U being handled by the system.
Next, the controller uses the SFm values and U within

the data-driven models discussed in Sec. III-B2 to esti-
mate the maximum workload, i.e., network bandwidth,
each instance can handle given its current SF value such
that the mean response time target Rth is not exceeded.
We refer to the bandwidth utilization estimated in this
manner for instance m as its effective capacity Umax

m .
The controller suggests a scale out of the LBG if the
total workload U exceeds the sum of effective capacities
of the existing instances. Similarly, it recommends a scale
in if the aggregate of the effective capacities exceeds U .
Finally, PRIMA instructs the load balancer to distribute
the incoming workload to LBG instances in proportion to
their effective capacities.
We note that PRIMA does not require monitoring of

instance response times, which can be expensive. We also
note that PRIMA’s load balancing and scaling decisions
are based on the Um and SFm values measured over
a sampling period. As a result, the controller has to
be invoked periodically to handle fluctuations in service
workload and interference.

B. Deploying PRIMA
We describe in detail the steps involved in deploying

PRIMA. We note that all instances belonging to a sub-

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:48:08 UTC from IEEE Xplore. Restrictions apply.

scriber’s LBG have the same specifications, as is typical
in public cloud platforms such as Amazon EC2.
1) Training the Probe: First, the probe system has to

train itself to detect interference for the specific kind of
instance it will be monitoring. The probe consists of a low
overhead microbenchmark application designed to com-
pete for a PM’s network bandwidth. The main objective
during training is to characterize the performance of this
application under a no interference condition. At runtime,
a deviation of the probe microbenchmark’s performance
from this no interference performance can be used to flag
interference. Creating a no interference condition requires
a dedicated instance. The dedicated instance has the same
characteristics as the instance that needs to be monitored.
However, it is executed in isolation on a PM and hence
does not suffer from interference. Commercial cloud sys-
tems such as EC2 offer such instances. Although such
instances cost more, they are only required for a very short
duration. For example, the probe training took only 30
minutes in our case studies.

Performance data under no interference is obtained
by concurrently executing on the dedicated instance the
probe microbenchmark application and the network ser-
vice being managed. Specifically, the network service is
subjected to a synthetic workload. The workload intensity,
e.g., the mean rate of arrival of synthetic requests, is varied
to cause a range of network utilizations of interest. The
mean execution time of the microbenchmark Riso(Uded)
is recorded for each utilization level Uded of the dedicated
instance to construct a look up table. To obtain a reliable
measure of Riso(Uded), multiple tests are done so that
the width of the 95% confidence interval of Riso(Uded) is
within 5% of the sample mean. Given a service utilization
level Um for instance m, the look up table provides
Riso(Um), the execution time of the microbenchmark at
that utilization when there is no interference.

Data obtained in the training phase can be used to
quantify the severity of interference at runtime as follows.
Consider a case where the mean execution time of the
probe microbenchmark recorded at runtime at instance m
under utilization Um is Rm(Um). If Rm(Um) statistically
exceeds Riso(Um), then the probe infers interference. The
severity factor SFm is used to provide PRIMA an indica-
tion of the impact of interference at instance m. SFm is
calculated as shown in Eq. 1. Higher values of SFm mean
that the Rm(Um) is significantly higher than Riso(Um),
which implies the impact of interference is severe.

SFm =
{

Rm(Um)−Riso(Um)
Riso(Um) , if Rm(Um)>Riso(Um) ∀m

0, otherwise
(1)

2) Building the Models: The next step is to develop
the response time and interference models, which allow
PRIMA to consider how a change in the workload dis-
tributed to an instance impacts that instance’s response

time and SF. Consider a scenario where the utilization
and SF of an instance m are measured to be Um and
SFm, respectively. Assume now that PRIMA wants to
explore the impact of changing the workload distribution
such that the utilization of the instance shifts from Um

to Um + ∆Um. This new assignment changes both the
response time of the instance as well as the severity of
interference perceived by the instance. The response time
and interference models together allow PRIMA to predict
the response time R̂m and SF ˆSFm at this new utilization.
To build these models, we conduct automated tests

where controlled levels of interference are injected into
an instance. Since we need to control interference, we
again employ a dedicated instance that has the same
characteristics of the production instances managed by
PRIMA. We deploy both the service and the probe on
this instance. We also execute within the instance a mi-
crobenchmark that emulates the load imposed by other
instances competing for the PM’s network bandwidth, i.e.,
the interfering load. Using the same synthetic workloads
employed in Sec. III-B1, we vary the network utilization
of the service Uded to cover a desired operating region.
We also vary the interfering load to mimic varying levels
of interference. We monitor the mean service response
time Rded, the SFded value from the probe, the service
utilization Uded, and the utilization due to the interfering
load Uint in each test.
We use data gathered from the tests and two dimen-

sional piece-wise linear interpolation to build the response
time model RTM. As shown in Eq. 2, RTM predicts
the response time R̂m of the service at instance m as a
function of the workload at the instance, i.e., Um, and
the severity of interference perceived at the instance, i.e.,
SFm. This model can be used to predict whether the mean
response time of any given instance is above the operator
specified threshold given its current Um and SFm values.
As described next, PRIMA also uses it in conjunction
with the interference model to determine the maximum
workload Umax

m that can be assigned to instance m while
still staying below Rth.

R̂m = RTM(Um,SFm) ∀m (2)

As shown in Eq. 3, the interference model IM helps
PRIMA ascertain in any instance m the relationship
between the total utilization of the shared resource, i.e.,
Utotal = Um +Uint, and its severity factor SFm. We use
one-dimensional piece-wise linear interpolation of the test
data to arrive at this model. We note that IM is con-
structed as a "reversible" model. It can be used to obtain
predictions for either Utotal or SFm if the other value is
known.

Utotal = IM(SFm) ∀m (3)

PRIMA uses RTM and IM in tandem to capture the
dynamics between workload, interference, and response

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:48:08 UTC from IEEE Xplore. Restrictions apply.

time. At runtime, PRIMA first uses IM to estimate the
utilization Uint corresponding to the interfering load. We
note that Uint can only be estimated since it cannot be
directly measured by a cloud subscriber in a production
deployment. To estimate Uint, PRIMA first uses IM to
obtain Utotal at the current measured SF value SFm. Next,
it estimates Uint as Utotal−Um where Um is the current
measured utilization within the instance.

Next, PRIMA uses both models to estimate the effective
capacity Umax

m of the instance m. Consider a scenario
where PRIMA wants to increase the workload distribution
such that the service utilization increases from the current
measured value of Um to Ûm = Um + ∆Um. The total
utilization now increases to Ûm +Uint and this increased
utilization makes the instance more sensitive to interfer-
ence, i.e., its SF value will likely increase. Consequently,
PRIMA needs to estimate a new SF value, i.e., ˆSFm, by
using this new value of the total utilization and exploiting
the reversible feature of IM. Finally, it can input Ûm

and ˆSFm estimated in this manner into RTM to pre-
dict whether the new workload assignment violates the
response time threshold. PRIMA changes ∆Um iteratively
using this process till it arrives at a utilization Umax

m where
the predicted response time is just below Rth.
3) Deploying the Controller: The dedicated instance

used for probe training and model building is now termi-
nated and the PRIMA controller is deployed on the pro-
duction system. We now describe the controller algorithm.

The algorithm first determines if there is enough effec-
tive capacity in the system to handle the system workload.
Specifically, it takes as input the Um and SFm values for
each instancem in the LBG to calculate the total workload
U . Next, the algorithm uses the process described in Sec.
III-B2 to determine the effective capacity Umax

m for an
instance m in the LBG. Finally, Ûmax is calculated as the
sum of the effective capacities of all instances in the LBG.

The algorithm now considers the scenario where there
is insufficient capacity to handle the system workload
without violating Rth, i.e., when U exceeds Ûmax. PRIMA
now spins an additional instance n and obtains its SF value
SFn at the next sampling instant. The effective capacity
of this instance Umax

n is then calculated and added to
Ûmax to reflect the increased capacity of the LBG. The
process of spinning additional instances is continued till
Ûmax exceeds U , i.e., there are enough instances to handle
the system workload. Information about the current state
of the LBG is maintained in a list denoted as LBG. Each
element in the list contains an instance identifier and the
estimated effective capacity of that instance.

As a final step, the algorithm determines whether there
is excess capacity in the system. Specifically, it checks
whether the current LBG, including any newly spun
instances, can be scaled in without violating Rth at any
instance. There are several reasons why the LBG may
need to be pruned. For example, the system might be
experiencing lower interference and workload than in the

previous sampling interval. Furthermore, during the scale
out process PRIMA might have added an instance with
very low effective capacity, i.e., an instance suffering from
heavy interference, before one with a higher effective ca-
pacity. In this scenario, there is a chance that PRIMA can
relinquish the lower capacity instance without violating
Rth.
To ensure that the minimum number of instances are

used to handle the system workload U , PRIMA first
sorts LBG in descending order of the effective capac-
ity values. Assuming that LBG has N instances, the
algorithm selects the first K instances in LBG whose
aggregate effective capacities equal or exceed U . If K is
less than N , then the system has excess capacity. Instances
corresponding to elements K + 1 and above are marked
for deletion. The load balancer weight for any instance
m in the group of K instances not marked for deletion
is calculated as the ratio of the effective capacity of that
instance and the sum of the effective capacities of all K
instances in the group. Information about the instances
to be deleted and the weights of the other instances is
communicated by PRIMA to the load balancer.
The controller’s behaviour can be fine tuned in a number

of ways. First, to avoid reacting to transient transgressions
of Rth, the controller can be instructed to wait till the
problem persists over a specified number of consecutive
sampling intervals. A similar restraint can be built in for
the scale in process as well. Furthermore, it is also possible
to incorporate a "factor of safety" by allocating a specified
number of extra instances to the LBG beyond what is
required to handle the system workload U .

IV. Experiment Methodology
A. Experiment Setup
Our private cloud setup consists of a dual socket Intel

Xeon E5645 server host with 6 cores per socket. Multiple
VM instances are consolidated on this server using Kernel-
based Virtual Machine (KVM) as the virtual machine
monitor. The typical time taken to start up a VM instance
in our setup is 30 seconds. The server has two 1 gigabit
Network Interface Cards (NICs). Each socket gets access
to its own dedicated NIC. Accordingly, instances pinned
on the same socket share 1 Gbps network bandwidth. Each
VM is configured with 1 virtual CPU (VCPU) and 1 GB
of physical memory.
The Web-based network intensive service we consider is

hosted on the Apache Web server (version 2.2). Controlled
interference is injected by executing the iperf3 tool on
additional Sources of Interference (SoI) VMs hosted on the
same socket executing the network service instances. The
probe is realized as an application deployed on the lighttpd
(version 1.4.35) Web server. The probe Web server has a
1 MB file that serves as its workload. The PRIMA system
initiates a download of this file once every sample period
T = 10 seconds from a separate load generation host. The
probe’s response time for this download are recorded and

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:48:08 UTC from IEEE Xplore. Restrictions apply.

used to calculate the SF value using Eq. 1. The probe
imposes a network utilization of around 5% and causes
only a modest increase of 2% to 3% in the network service’s
response time in our tests. We note that communicating
the utilization and SF values from the instances to PRIMA
did not incur any significant overheads.

We use another host, identical to the server host, to
generate synthetic workloads. The NIC ports on this load
generator host and the server host are connected via
a gigabit switch, which eliminates network bottlenecks
between the hosts. The httperf [13] workload generator
is used to generate synthetic requests from the load gen-
erator host. We follow the methodology proposed in our
previous work to ensure that there are no bottlenecks in
the load generator host [14]. Consequently, response times
measured by httperf reflect the performance of the network
service instances.

We use a modified version of httperf that can simul-
taneously generate workload to multiple instances in an
LBG [15]. The PRIMA controller executes on the load
generation host and communicates with httperf to achieve
the desired load distribution across instances. Specifically,
the controller collects the utilization and SF values over
the sample interval T and predicts whether any of the
instances in the LBG are violating Rth. If so, the controller
waits for an additional W intervals to check if there
are sustained violations. If there are sustained violations,
PRIMA determines the instances in the LBG to mitigate
this problem and assigns their load balancer weights. This
information is passed on to httperf, which modifies its
workload generation accordingly. For this study, we use
W = 1. We note that PRIMA’s controller algorithm caused
negligible overheads in our experiments.

B. Network Service Workload
We evaluate PRIMA with a realistic video streaming

workload. The characteristics of the workload are sum-
marized in Table I. To create this workload, we follow the
methodologies proposed by previous researchers [16], [17]
who characterized YouTube video streaming over HTTP.
We use freely available stock videos [18] to create the
workload. We choose a Zipf distribution with α = 0.8
to model the popularity of videos. This is consistent
with previous work [16], [19] that characterizes YouTube
workloads. Since we have a small scale setup, we restrict
the video population, i.e., number of unique videos, to
100. The distributions of video size and video duration
are based on past work that characterized YouTube videos
[16]. Finally, following previous work on YouTube [16],
[19] we choose a fixed bitrate of 419 Kbps for all videos,
which represents 10 seconds of video consuming 0.5 MB
of storage.

Using these settings, we are able to achieve up to 66 con-
current video sessions in our experiments. By varying the
mean session inter-arrival time, we are able to utilize the
network bandwidth in the range of 10% to 90%. We note

TABLE I
Characteristics of Video Workload

Parameter Value
Video popularity distribution Zipf, α = 0.8

Video count 100
Mean Video size 11 MB
Video Bit rate 419 Kbps

that the mean response times to download video segments
for utilizations beyond 60% are greater than 30 seconds,
which is considered excessive in realistic video streaming
platforms. Hence we assume a range of operation of 10%
to 60% for the video streaming workload.

V. Results

In this experiment, we evaluate PRIMA’s ability to scale
out and scale in while facing fluctuating levels of incoming
workload and interference. Table II captures the results
of this experiment. From the table, the system initially
has instance 1 running on one socket of the server host.
Instance 1 is configured to have no contention, i.e., SF1 =
0, and incurs utilization U1 = 30%, which does not violate
the response time target Rth = 1000 ms. This is seen at
the 1 minute mark in Table II.
After 100 seconds from the beginning of the experiment,

we increase the incoming workload to the system so as to
incur an utilization of 40% in instance 1 which causes its
measured response time R1 to exceed Rth. This violation
is detected by PRIMA and verified as a consistent inter-
ference problem, as observed at the 2 minute mark in the
table (violations are marked in bold in the table). Since the
total incoming load at this time is higher than the effective
capacity of instance 1, PRIMA mitigates this problem by
requesting a scale out. This results in the addition of a
new instance 2 on another socket of the server which does
not face any contention. This instance becomes available
after 30 seconds and PRIMA monitors SF2 = 0 after an
additional sampling interval, i.e., 10 seconds. Since the
sum of the effective capacities of instances 1 and 2 exceeds
the incoming load to the system, PRIMA does not scale
out any further and distributes the incoming workload
equally between both instances such that U1 = U2 = 20%.
The response times of both instances are below Rth, as
seen at the 3 minute mark in the table.
After another 30 seconds, the incoming workload to the

system is decreased from 40% to 30%. PRIMA detects this
decrease in workload after 10 seconds and confirms that
this behaviour is consistent after an additional 10 seconds.
Since the effective capacity of instance 1 is enough to ac-
commodate the total incoming traffic to the system at this
point, PRIMA scales in by assigning all incoming workload
to instance 1 and terminating instance 2. Consequently,
the measured response time of instance 1 increases but is
still maintained below Rth, as seen at the 4 minute mark
in the table. These results demonstrate the effectiveness of

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:48:08 UTC from IEEE Xplore. Restrictions apply.

TABLE II
Video Streaming Workload

Time(min) U1 (%) SF1 R1 (ms) U2 (%) SF2 R2 (ms)
1 30 0 978
2 40 0 1623
3 20 0 475 20 0 481
4 30 0 985
5 30 0.45 1520
6 18 0.27 535 12 0.37 355

the PRIMA technique to scale out and scale in to handle
fluctuations in the incoming workload to the system.

After 40 seconds, we introduce contention on both
sockets of the server by running additional SoI instances
on these sockets. This introduces interference in instance
1 such that SF1 = 0.45 and as a result R1 exceeds Rth.
PRIMA detects this Rth violation after 10 seconds and
waits for an additional 10 seconds to confirm this be-
haviour. This is observed at the 5 minute mark in Table
II. At this point, PRIMA is forced to scale out again, and
spins a new instance 2 as detailed earlier. This instance
becomes available after 30 seconds and PRIMA monitors
SF2 = 0.25 after an additional 10 seconds.
PRIMA verifies that the total effective capacities of

instances 1 and 2 exceeds the incoming load to the system
and does not scale out any further. PRIMA distributes
the incoming workload to instances 1 and 2 such that
U1 = 18% and U2 = 12%. We note that since workload
is removed from instance 1 and added to instance 2, SF1
drops from 0.45 to 0.27 and SF2 increases from 0.25 to
0.37. PRIMA successfully mitigates the interference prob-
lem by maintaining the response times of both instances
below Rth, as observed at the 6 minute mark in the table.

VI. Conclusions and Future Work

This paper addresses the challenging problem of
subscriber-driven cloud interference mitigation by present-
ing a novel technique called PRIMA. PRIMA uses data-
driven models that consider the joint impact of work-
load and interference on the response times of resource
instances in a load balanced service system. The models
are used at runtime to intelligently scale the system and
distribute load across all its instances such that the re-
sponse time of each instance is below an operator specified
threshold. To the best of our knowledge, we are not
aware of other subscriber-driven interference mitigation
techniques that provide an explicit mechanism to meet
response time targets while using the least possible number
of instances. Using a realistic video streaming workload,
we show that PRIMA is able to respond to fluctuations in
both workload and interference.

Future work will consider optimizing the cost of load
balancing by exploiting the simultaneous use of different
types of instances. We will also look into integrating

workload prediction techniques into PRIMA to make it
more proactive.

References
[1] J. Mukherjee, D. Krishnamurthy, J. Rolia, and C. Hyser, “Re-

source contention detection and management for consolidated
workloads,” in IM, 2013.

[2] G. Kousiouris, T. Cucinotta, and T. Varvarigou, “The effects of
scheduling, workload type and consolidation scenarios on virtual
machine performance and their prediction through optimized
artificial neural networks,” J. Syst. Softw.

[3] G. Wang and T. S. E. Ng, “The impact of virtualization on net-
work performance of amazon ec2 data center,” ser. INFOCOM,
2010.

[4] J. Mukherjee, D. Krishnamurthy, and M. Wang, “Subscriber-
driven interference detection for cloud-based web services,”
IEEE TNSM, 2016.

[5] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation
into network performance in virtual machine based cloud envi-
ronments,” in INFOCOM, 2014 Proceedings IEEE.

[6] E. Baik, A. Pande, Z. Zheng, and P. Mohapatra, “Vsync: Cloud
based video streaming service for mobile devices,” in IEEE
INFOCOM 2016, 2016.

[7] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, and J. Al-Jaroodi,
“A survey of load balancing in cloud computing: Challenges
and algorithms,” in 2012 Second Symposium on Network Cloud
Computing and Applications.

[8] A. K. Maji, S. Mitra, and S. Bagchi, “Ice: An integrated config-
uration engine for interference mitigation in cloud services,” in
ICAC, 2015.

[9] S. A. Javadi and A. Gandhi, “Dial: Reducing tail latencies for
cloud applications via dynamic interference-aware load balanc-
ing,” in ICAC, 2017.

[10] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and
D. Rajan, “Prepare: Predictive performance anomaly prevention
for virtualized cloud systems,” ser. ICDCS ’12.

[11] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bian-
chini, “Deepdive: Transparently identifying and managing
performance interference in virtualized environments,” ser.
USENIX ATC’13.

[12] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: recon-
ciling scheduling speed and quality in large shared clusters,” in
Proceedings of the Sixth ACM Symposium on Cloud Computing,
2015.

[13] httperf, “Http performance measurement tool,.”
[14] J. Mukherjee, M. Wang, and D. Krishnamurthy, “Performance

testing web applications on the cloud,” in ICSTW, 2014.
[15] R. Hashemian, D. Krishnamurthy, M. Arlitt, and N. Carlsson,

“Improving the scalability of a multi-core web server,” ser. ICPE
’13.

[16] J. Summers, T. Brecht, D. Eager, and B. Wong, “Methodologies
for generating http streaming video workloads to evaluate web
server performance,” ser. SYSTOR ’12.

[17] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G.
Rao, “Youtube everywhere: Impact of device and infrastructure
synergies on user experience,” ser. IMC ’11.

[18] “Pexel videos:free stock videos.”
[19] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic

characterization: A view from the edge,” ser. IMC ’07.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:48:08 UTC from IEEE Xplore. Restrictions apply.

