
EMU-IoT - A Virtual Internet of Things Lab

Brian Ramprasad
Dept of El. Eng. and Comp. Sci.

York University
brianr@yorku.ca

Marios Fokaefs
Dept of Comp. and Soft. Eng.

Polytechnique Montreal
marios.fokaefs@polymtl.ca

Joydeep Mukherjee
Dept of El. Eng. and Comp. Sci.

York University
jmukherj@yorku.ca

Marin Litoiu
Dept of El. Eng. and Comp. Sci.

York University
mlitoiu@yorku.ca

Abstract—Internet-of-Things technologies are rapidly emerg-
ing as the cornerstone of modern digital life. IoT is the main
driver for the increased “intelligence” in most aspects of everyday
life: smart transportation, smart buildings, smart energy, smart
health. Nevertheless, further progress and research are in danger
of being slowed down. One important reason is the cost of
infrastructure at scale. The difficulties in setting up very large
IoT networks do not permit us to stress test the systems
and argue about their performance and their durability. To
tackle this problem, this work proposes EMU-IoT, a virtual
lab for IoT technologies. Using virtualization and container
technologies, we demonstrate an experimentation infrastructure
to enable researchers and other practitioners to conduct large
scale experiments and test several quality aspects of IoT systems
with minimal requirements in devices and other equipment.
In this paper, we show how easy and simple it is to set up
experiments with EMU-IoT and we demonstrate the usefulness
of EMU-IoT by conducting experiments in our lab.

Index Terms—IoT, networks, cloud computing, containers,
performance, empirical software engineering

I. INTRODUCTION

The number of IoT devices has grown exponentially over
the past decade. To investigate and learn about the behavior of
IoT networks at scale is not economically feasible. Although
the cost for hardware devices may be significantly reduced,
the acquisition of a large quantity of specialized equipment
can still be prohibitive for research. Despite this, researchers
have been exploring the IoT domain and have contributed
simulation and emulation tools. Nevertheless, exactly because
of cost and inefficiency concerns, these efforts are fragmented
and they focus only on parts of an IoT network and in some
cases only for a single scenario [1]–[4].

The primary challenge with designing these research tools
is how to create a platform that can be used to evaluate the
performance of a diverse set of applications and devices from
end to end and in a uniform way [5]. Without collecting
application performance data in a uniform way, the derived
metrics may not be comparable because different sampling
methods are used. For example, CPU utilization can be polled
from the hardware, the operating system, the container level
or the application level. This could yield different results
depending on which processes are included in the calculation
of the CPU usage metric. Also, each application will use
memory and CPU in a different way because each applica-
tion may have different processing patterns. Sometimes these
applications may be installed on different hardware where the
type of available computing resources affects the performance
of the application. To the best of our knowledge there is no

existing system that can provide an end-to-end evaluation of
an IoT network that can also be installed on the production
hardware. Our motivation for this work emerged from our
previous research [6], where we needed to be able to run
experiments and perform scalability tests for our back-end data
infrastructure for a proposed building management system in
the absence of the actual IoT infrastructure and configuration.
However, we were unable to find a solution that could help
us to evaluate the entire IoT system (the devices and the IoT
application). Most tools focused on either the IoT devices or
the application performance, but not both.

Towards the goal of providing a solution to scale and
evaluate IoT networks in a uniform way, we propose a virtual
lab, the Emulated Internet-of-Things Lab (EMU-IoT). EMU-
IoT is an adaptable architecture and a smart testing framework
which network designers can implement and will allow them
to reliably scale an IoT network in an autonomic fashion.
Autonomic in this context is defined as a system that is
capable of continuously monitoring the managed system with
the ability to take corrective actions to achieve the performance
goals of the application. In this case, a corrective action would
be detecting that a target utilization has been surpassed and a
scaling action is required to maintain the quality of service on
the network. A quality of service goal would be defined by the
user. For example, based on the goal of preventing the CPU
utilization from going over a certain value, which has been
known to affect the response time of the application, a correc-
tive action could be to horizontally scale the infrastructure by
adding a new virtual machine thus giving us more CPU cores.
Our overall goal is to provide an emulation environment so that
others can install our platform and be able to investigate how
their IoT application will perform on their specific network.

Towards this goal we make the following contributions:
We demonstrate a customizable virtual lab (EMU-IoT)
that can be used to model heterogeneous IoT networks
on an adaptable architecture. We are able to deploy all the
necessary components to have a fully working solution that is
reproducible by others. The software is executable on nearly
any cloud computing service and can be installed without the
need of any specialized hardware. EMU-IoT in its present state
is capable of monitoring any IoT application as long as it
is containerized and can easily be adapted to monitor non-
containerized applications. A methodology and specification
is created to define what an emulated IoT device is. We
provide a generic design and a minimum set of characteristics
that an emulated IoT device must have. This allows EMU-

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

IoT to be extended so that others can create any software
defined version of a physical IoT device to meet their custom
requirements.

II. CHALLENGES WITH IOT DEPLOYMENTS

In this section we describe some of the challenges with run-
ning IoT experiments. Specifically, we focus on the challenges
that consider the high cost aspects of building and maintaining
physical labs, experimental complexity and future flexibility in
building IoT networks.

In a typical IoT deployment, we have IoT devices, an aggre-
gation point to receive incoming data from these devices, and
various applications that use this data for different purposes.
For example, in the case of smart homes and buildings we
can have many embedded environmental sensors, where we
need both real time information and the ability to perform
historical analysis on data streams. As shown in Figure 1, we
can have homes distributed across different cities that may
send their data to a single gateway. Message brokers receive
the data from the gateways where they can later be retrieved
by a stream processing application for analysis. These stream
processing applications may then store the results of the
analysis in a persistent database.

Figure 1: Example Smart Home Streaming Application

A smart home in North America is predicted to have a large
number of sensors and that number dramatically increases
to over 100 per home where assisted living technologies are
installed [7]. We can imagine that data streams from hundreds
or even thousands of homes would require extensive infras-
tructure to support such applications. Homes are naturally
geographically dispersed and some maybe in remote areas
away from the data centers that process the data streams. Using
the example of smart homes, we argue that to accurately plan
for future capacity and to properly stress test IoT applications
with realistic IoT workloads, the emulation of IoT devices
and IoT networks alone is not enough. We must be able
to deploy the actual data aggregation and stream processing
applications along with the emulated IoT devices. Deploying
the applications and virtual devices together is similar to the
way they would be deployed in a production environment. This
gives us a more realistic picture of how an application will

behave. Keeping this in mind, we now discuss the challenges
associated with such deployments.

A. Physical Challenges

IoT devices exist as physical devices in the world today.
Therefore, to execute an experiment involving physical sen-
sors, one must be able to procure devices, which can present
a challenge primarily from a cost perspective. While some
sensors may be relatively inexpensive to acquire, other devices
maybe be very expensive which can lead to a reduction in the
number of actual sensors used in physical lab experiments
[8]. Physical sensors require human labour costs and support-
ing infrastructure. For example, deployment costs can range
from $2.50/sqft which would be approximately $250,000 in
a 100,000 sqft building. This is a large investment before
knowing how an IoT application will perform [9].

B. Experimental Challenges

In this section we discuss some of the challenges faced by
a virtual lab architecture in order to emulate real world IoT
networks. The aim of this work is to be able to emulate the
topology and behavioral patterns that may occur in an IoT
network.

1) Geographical Distribution
The very nature of IoT devices is that they are dispersed
geographically meaning that they are externally located
and away from a centralized computing infrastructure.
For example, one may have a centralized analytics ap-
plication located in one city, but IoT devices may spread
across many cities and countries. This is done to reduce
the cost and complexity of the IoT network. Therefore,
to replicate this scenario and get results similar to a
production deployment, we need an emulator that is
capable of allowing users to install their particular IoT
application into their physical production hardware rather
than in a test environment where the generated results
could be different.

2) Temporal Distribution
IoT devices are typically configured to suit the usage
patterns of the environment in which they are deployed.
For example, within a work environment, during the
day a temperature sensor may be configured to take
more frequent readings because during these hours more
humans can imply greater temperature fluctuations in
the space. Since we have more frequent readings, the
load on the network becomes larger. Conversely at night,
the temperature is much more stable because everyone
has gone home and now we can configure the sensor
to take readings every hour instead of every 5 minutes
during work hours. In this scenario, an emulator for
IoT networks should be parameterizable to include this
temporal feature to replicate this scenario.

3) Heterogeneity
Perhaps the most obvious characteristic of IoT networks
is the variety of device types that exist in the environment.
Many new devices are being deployed and others are

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

being decommissioned on a regular basis. This presents
two main challenges. First, we need an emulator that is
easily extendable and generic enough so that someone
can create new emulated IoT devices. Second, we need to
design the emulator in such a way that it does not disturb
the stability of the existing network when we remove
and add new devices. This is a critical feature for the
emulator, because for real world networks, downtime is
not acceptable.

4) Network Connectivity Types
As previously mentioned, there could be many types
of sensors on an IoT network. These devices may also
use different technologies to establish connections to the
cloud network, for example, Bluetooth, Wi-Fi,and Ether-
net. These different types of connectivity have different
bandwidth speeds. An IoT emulator should have this
feature so that we can compare the delay and bottlenecks
between using different network connectivity types.

5) Network Protocol Variety
IoT networks can also be diverse in terms of the protocols
that are used to provide communication between devices
and the computing infrastructure. Additionally, existing
protocols are always being updated and new ones may
appear in the future. An emulator should be designed in
such a way that you can use any communication protocol.
No reconfiguration should be necessary to implement a
new protocol or to have multiple protocols running at the
same time.

6) Infinitely Scalable Design
A common theme appearing in the research of IoT net-
works is that the number of connected devices is growing
exponentially and this trend is expected to continue for
the foreseeable future. A major concern for application
developers and network designers is how to prepare for
the growth ahead. There are two major concerns in this
problem space: a) how to quickly scale up to meet the
resource demands incurred by an exponential growth of
devices, and b) how to avoid having idle resources in
our infrastructure that will unnecessarily increase cost.
An emulator must have the capability to deal with these
two problems.

7) Disaster Handling
An often overlooked scenario when designing an IoT
network is the ability to handle the failure of application
components and the IoT devices themselves. The failure
of IoT devices is a common occurrence since devices
operate in the external environment and are subjected to
harsh outdoor conditions. In the physical world, the IoT
operator will have to directly interact with these devices
and either cut their power off or disconnect them from the
network. This may be difficult if the device is in a remote
location that is hard to access. An emulation environment
should allow users to easily and quickly execute disaster
scenarios to learn about the effects on the IoT network
and applications that depend on these devices.

8) Security Threat Handling

As per our smart home example these devices exist in
an uncontrolled environment. They are subject to attacks
and may become compromised. Applications that process
streaming data need to know how to deal with rogue or
compromised devices in their network and how to deploy
a threat mitigation response. With emulated IoT devices
the device behaviour can be customized to evaluate a wide
variety of scenarios to perform vulnerability testing on
production systems.

9) Cyber Physical and Virtual Device Coexistence
Very often it is the case that there are existing IoT devices
deployed in production and it is possible that the addition
of new devices may put stress on an application that
makes use of the IoT data. In order to evaluate the
computing resources needed to support additional devices
in a production environment, we can use emulation to
inject software defined versions of the IoT devices that
will also send data to the production application. From
the application perspective, it should be opaque that
the device that is sending its data is emulated and not
physical. This approach gives us great flexibility with
respect to testing before laying out any capital costs and
does not disturb any running application in production.

III. EMU-IOT COMPONENTS AND ARCHITECTURE

In this section we discuss the major components of EMU-
IoT and how they inter-operate to provide an end-to-end solu-
tion for evaluating IoT networks and application performance.
Our approach is based on a microservices architecture using
containers, which allows for rapid instantiation, customizabil-
ity and portability of the components. Using microservices also
allows EMU-IoT to provide robust orchestration capabilities
to execute large scale experiments and to collect performance
metrics in a uniform way across the entire deployment. Our
current implementation is based on Docker but any other
container provider can be used.

A. Device Properties

A virtualized IoT device must fully emulate the behavior
and characteristics of the actual device. In the context of IoT
emulation, we will emulate the three generic properties that a
virtualized IoT device should have: connectable, configurable,
and deployable. Our goal is to provide a generic reference
architecture that can be extended to suit the needs of a
particular deployment.

1) Connectable
IoT devices vary in terms of their ability to connect to
a receiving device that will read the emitted data. The
typical connection types are over Bluetooth, WIFI, and
hardwired (serial, Ethernet). A receiving device could be
a controller that aggregates several sensors or other IoT
devices that communicate in a peer-to-peer topology. The
consequence of this is that different connectivity modes
may have different transmission rates. For example, trans-
mitting data over Ethernet is faster compared to WIFI
and Bluetooth. To deal with this variation, a virtualized

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

IoT device must have the ability to set its transmission
type so you can model the actual physical device. When
instantiating an IoT device in the EMU-IoT environment,
the connectivity type can be set at run time.

2) Configurable
Since IoT devices also vary greatly in terms of the
types of onboard sensors (temperature, movement, video,
audio, etc.), developing a software-based component that
is configurable is more practical compared to several
individual devices. In the first iteration of our design we
focused on creating a virtualized IoT device with the abil-
ity to configure the emission rates to simulate different
connectivity types and setting the reading ranges for a
temperature and luminosity sensor. In future iterations,
we hope to expand the number of generic sensor types
that are supported.

3) Deployable
The most important feature of the EMU-IoT platform
is the ability to rapidly instantiate IoT devices. To
achieve these goals, we use a microservices approach
by containerizing the software component so that it can
be quickly activated. A virtualized sensor is a small
lightweight application that begins emulating the behavior
of an IoT device once a container has been started. The
primary advantage of this is that an unlimited number
of virtualized IoT devices can be created and they can
be selectively dispersed on different networks according
to the needs of the user. Another advantage of using
microservices is that you can have a common way to
communicate with the containers even though different
IoT software components might be running inside the
container.

B. Virtualized IoT

In this section we describe the two main virtualized compo-
nents in EMU-IoT, the Device and the Gateway, which enable
workloads to be executed. These components can be rapidly
instantiated and deployed at scale using a microservices ap-
proach.

1) Device
A virtualized IoT Device in the context of the EMU-IoT
lab is an encapsulated service that emits data. It adheres
to the three properties as described in Section III-A which
are connectability, configurability, and deployability. As
shown in Figure 2, we have three different components
inside a virtualized IoT device. The first component
is the Configuration Interpreter, which allows users to
modify the behavior of the device at build time, where
the parameters are passed to the service running inside
the container. Once the configuration has been set, the
second component, the Data Generator service begins to
produce the emulated data. This data is then encoded in
the appropriate format for the transport protocol being
used, and then the third component, the Data Emitter,
transmits the information to a service that is external to
the virtualized IoT device. A virtual IoT device can also

be configured to accept new data at runtime if the device
needs to obtain new information once the data generation
service has been started.

Figure 2: Virtualized Device

2) Gateway
A virtualized IoT Gateway in the context of the EMU-IoT
lab is an encapsulated service that receives, formats, and
forwards data onward to an external service that collects
data from many gateways. Virtual gateways may also
support physical IoT Devices.

Figure 3: Virtualized Gateway

As shown in Figure 3, we have four different components
inside of a virtualized IoT gateway. We have a Configura-
tion Interpreter, which accepts parameters that are passed
to the service inside the container to modify the behavior
of the gateway. Once the configuration has been set, the
Data Receiver service starts and waits for incoming data
from the physical or virtualized IoT devices. This data
is then checked to make sure it is in the correct format

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

by the Data Formatter and then each reading from the
IoT device is formatted into a common message standard
that is used on the IoT network. The Data Forwarder then
makes a connection to a data aggregation service that is
waiting for this information.

C. Application Architecture in EMU-IoT

A typical IoT application consists of IoT devices, the gate-
ways that provide connectivity and the back-end applications
that consume the IoT data. In this section, we discuss the
underlying architecture in EMU-IoT that supports a running
IoT application. We also describe the pipelines that allow the
movement of data between the components in the IoT network.

Figure 4: Network Architecture

The architecture for the IoT network is shown in Figure
4. As seen in the figure, the IoT network has 3 separate
components that can operate independently of each other.
These 3 components are the IoT producers, the IoT gateways
and the IoT applications. The producers emulate IoT devices
and stream the IoT data to the gateways which in turn forward
the data to the applications. In this particular example as
shown in Figure 4, once the IoT data is forwarded to the
application component, the data is passed between various
applications, such as from App A to App B and then to
App C. We note that there can be fewer or more than 3
applications in this component and that these applications can
be standalone services that are not dependent on each other.
As seen in Figure 4, all 3 components run on a containerized
environment. The use of containers is a mandatory requirement
for the producers and the gateways, but the applications can
run directly on the host. Next, we discuss these 3 components
in detail.

D. Producer Host

The producer host consists of virtualized IoT devices that
produce data which is emitted and read by an external service.
As shown in Figure 5 we have a Virtual Machine (VM)
that can host many instances of the virtual IoT device. The
purpose of this design is to allow us to deploy multiple IoT
devices easily on the producer VM as needed. Each virtual IoT
device is deployed as a single container, as shown in Figure 5.
The choice of deploying the devices on containers is dictated
by the fact that containers are designed to be lightweight,

Figure 5: Producer Host

thus allowing a large number of virtual IoT devices to be
run on a single producer VM. This design overcomes the
challenges described in Section II by providing a way to
deploy sensors without incurring large costs and being able
to create and remove them on demand which is difficult with
physical devices. We note that the virtualized IoT devices are
created one per container as this allows us to better emulate a
standalone IoT physical device. In contrast, creating multiple
virtualized devices as threads sharing resources inside a single
container does not properly emulate a realistic IoT deployment
scenario.

E. Gateway Host

Figure 6: Gateway Host

The gateway component consists of a VM that hosts the vir-
tual IoT gateways where the virtualized IoT devices from the
producer VM transmit their data to. The gateway component
is shown in detail in Figure 6. This figure illustrates that the
gateway VM hosts multiple containers and a single instance of
a virtual IoT gateway is run inside each container. Each virtual
IoT gateway is configured to simultaneously receive data from
multiple IoT devices. Hence, we do not need as many virtual
IoT gateways as the number of virtual IoT devices. This is a
key feature of EMU-IoT as we can experiment with different
workloads on the gateways to determine the optimal number
of gateways needed to support a set of IoT devices. This
is important because the computing resources needed for a
virtual IoT gateway are much higher compared to a virtual
IoT device, and therefore optimizing our computing resources
by limiting the number of virtual IoT gateways is crucial. We
note that similar to the producer host, the gateway host can
have more than one container with a IoT device or virtual
gateway.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

F. Application Component

Figure 7: Application Component

The application component is shown in Figure 7. As seen in
the figure, the application component consists of one or more
VMs that hosts containerized applications which support the
IoT services running on the network. As mentioned before,
these applications can also be run directly on the VMs without
the need for containers, or in some cases, even directly on the
hardware. The applications are typically services that ingest,
process and store the incoming data from the various IoT
devices on the IoT network. Typically, we are interested in
monitoring the resource usage patterns of the IoT applications
in order to maintain the quality of service for these applications
on the IoT network.

G. EMU-IoT Simulator
In this section we briefly discuss the main components of

the EMU-IoT platform as shown in Figure 8. Together, this
collection of services provides users with the ability to define
and execute a wide variety of IoT experiments.

1) IoT Orchestrator
The IoT Orchestrator is the main driver of the EMU-IoT
platform. The IoT Orchestrator defines the configuration
parameters of the experiment, such as the experiment
type (bottleneck detection, resource prediction, network
latency, etc), experiment duration, and the particular
resource metrics such as (CPU,DISK, MEMORY, etc)
that are to be observed and recorded. At this moment, the
IoT Orchestrator is script-based but we hope to provide
a Web based user interface in the future.

2) IoT Monitor
An IoT Monitor is responsible for observing and col-
lecting the resource metrics for a single application.
Using this approach allows us to have a uniform way of
collecting resource usage metrics from the applications
that support the IoT devices. In the IoT Monitor class,
the data collection functions can be overwritten to extract
data from another source other than Docker. This makes
it quite easy to pull data from any source in case a
commercial monitor such as Prometheus1 is being
used.

1https://prometheus.io/

3) IoT Monitor Manager
The IoT Monitor Manager is responsible for coordinat-
ing the metrics collection process from the individual
IoT Monitors. Our example implementation is based on
Docker, which exposes a metrics API to obtain informa-
tion about the resource consumption of the containers.
The manager aggregates the information from each IoT
Monitor which observes individual application instances.
IoT Monitor Manager is platform agnostic, which means
that it can manage monitors that pull data from sources
other than Docker as long as the monitor adheres to the
generic interface we have defined.

4) IoT Experiment
The IoT Experiment component drives the actions that the
user is trying to enact in order to see observable changes
in the application performance. The actions are based on
the type of experiment that needs to be run. The user can
provide the addresses of the Docker containers and the
applications that will be monitored. IoT Experiment then
implements the Smart Testing Framework.

5) Smart Testing Framework
The framework is based on the concept of generating
test cases in order to drive IoT experiments or to au-
tonomically trigger actions to scale the IoT network up
and down in a production setting. In a scenario where
additional IoT devices are being deployed it is important
to know what computing resources are needed to support
the applications that will process the additional incoming
data. A prediction model would be used to estimate the
amount of resources required. The Smart Testing Frame-
work provides a facility for a user to implement a custom
prediction model. More details about the framework can
be found here [10]. For the experiments described in this
paper a simple linear regression module was used from
the Python Statsmodels API2.

6) IoT Experiment Linear Regression and ML
These components are examples of user provided libraries
that are fed data from the IoT Monitors and then used by
the Smart Testing Framework to generate test cases for
predictive modeling. Depending on the type of data that
is being generated by the IoT devices, different libraries
can be substituted.

7) IoT Device Service
The IoT Device Service provides the simulator with
the ability to instantiate software defined versions of
IoT devices. As described in section III-A, these are
containerized virtual devices and this service allows you
to start a container that encapsulates the source code
for the emulated IoT device. The service provides a set
of generic interfaces that apply to all IoT device types.
Currently we have implemented a temperature and light
device in addition to an IoT camera as shown in figure 8.
As long as a IoT device can be created inside a Docker
image, this service can be used to turn on and off the

2https://www.statsmodels.org/stable/index.html

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

Figure 8: EMU-IoT Simulator

virtualized device. As shown, in Figure 8 the service can
be extended for various device types. It is also possible
to combine multiple sensors inside a single container if
required. For example, to emulate an entire smart home
that emits aggregated data, then the application should be
designed to combine this data into a single tuple (a row
of IoT data) for emission.

8) IoT Load Balancer
The IoT Load Balancer maintains information about the
resources on the IoT network and is used by the simulator
when deciding where best to place virtualized IoT devices
and gateways. The available resources determine the
host’s ability to handle virtual devices. For example, we
can logically define how many devices a given physical
host can support based on the type. A temperature sensor
is computationally light, so we can have large numbers of
them on a given host, whereas a camera device is much
more computationally intensive, so a host can only have
a few of them running. When a request arrives to create
a device, the load balancer will decide where to place it.
This can be done by defining a new distribution
policy method. A policy can be used to place virtual
devices on specific hosts based on geographic location or
a round robin policy. Our example application uses a fill
first policy which loads the maximum number of virtual
devices on a host then moves to the next available host.

9) IoT Network
The IoT Network component maintains information about
the physical layout of the entire IoT network and the in-
terconnected links between the different hosts. It provides
look up methods for the simulator as shown in Figure 4.
For example, if we want to find out which hosts can
serve virtualized IoT devices or serve as hosts for our
big data application, this service will provide us with this
information.

IV. EXPERIMENT SETUP AND SYSTEM CONFIGURATION

In this section, we describe how EMU-IoT can enable
users to run experiments using virtual components that would

otherwise be cost prohibitive if physical devices were used.
We provide details on how to configure the parameters to suit
a particular IoT application deployment and we also discuss
the variety of experiments that are possible. In section V
we discuss the results of experimenting with an example IoT
application. The EMU-IoT platform can be cloned from the
Github repository 3.

A. Defining an Experiment

The first step in setting up an experiment or ongoing testing
of a live system is to define the goal of the experiments. In our
example scenario we have an IoT application that collects data
from environmental sensors in real time, analyses the data, and
persists the information to storage. Therefore the goal for this
application is to have fast responses to user queries over those
data streams. To achieve this goal, it is a strict requirement
that the computing resources (CPU, Disk, Memory) do not
become saturated such that they negatively impact response
time. We discuss in the following sections how to setup the
simulator to evaluate this scenario using EMU-IoT.

B. Environment Prerequisites

EMU-IoT is a containerized platform that is Docker4

compatible. Docker is required to be installed with the remote
management API enabled. At a minimum, one Docker host
is needed for the emulated IoT devices, and another for the
virtual gateways to receive data from the IoT devices. On the
application side, many Docker hosts can run different applica-
tions that support a streaming application. In our scenario,
we have one Apache Kafka5 broker to receive the data
from the IoT gateways, one Apache Spark6 instance for the
streaming analytics, and one Apache Cassandra7 instance
to persist the data.

3https://github.com/brianr82/EMU-IOT
4https://www.docker.com/
5https://kafka.apache.org/
6https://spark.apache.org/streaming/
7http://cassandra.apache.org/

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

C. EMU-IoT Configuration and Customization

EMU-IoT was written in Python, therefore any reference
to programming code will be in Python. The first step in
configuring an IoT experiment is to provide details to the IoT
Orchestrator.

1 IoTExperiment =
IoTExperimentLinearRegression()

2 experiment_number ="1"
3 IoTExperiment.setExperimentName
4 ("Linear_Regression_50")
5 IoTExperiment.setTargetCPUUtilization("50")
6 IoTExperiment.configureExperiment("mix")
7 IoTExperiment.
8 set_max_dev_on_a_prod_host("200")
9 IoTExperiment.

10 set_max_on_virtual_gateway("50")
11 IoTExperiment.run()

Figure 9: IoT Orchestrator Parameters

Figure 9 shows the configuration parameters of EMU-
IoT for the experiment. This set of statements will execute
a large scale experiment involving hundreds of temperature
and camera devices, potentially across different geographic
regions. In this example configuration, historical data will be
used to compute a regression function to predict the number
of IoT devices required to hit a target CPU utilization of 50%
in our message broker.

D. Creating a custom experiment class

The primary function of the EMU-IoT lab is to simulate sce-
narios and to carry out actions that realize these scenarios. The
IoT Experiment class is designed to drive a simulation
by generating test cases that cause changes in the simulation
of IoT networks. This class requires minor configuration
depending on the needs of the user. For example, to make
use of new libraries or to add more application hosts based on
a proposed IoT application, all that is needed is to import those
libraries and provide the IP addresses of the physical hosts.
Details regarding how to modify the utility methods config-
ureNetwork(), configureMonitor(), IoTNodeSetup(), cleanup()
can be found on the GitHub repository.

The two important methods in the experiment class are
generateTestCase() and configureExperiment().

The generateTestCase() method drives the creation of the
IoT devices. Test cases are changes in the scenario where we
want to see if they have an effect on the resource metrics of
the IoT application. In each test case, we create a specific
quantity for each type of IoT device. As shown in Figure 10
(lines 2 and 9), two loops are used to create a specific number
of temperature and light sensors, and IoT cameras in each
iteration. The purpose of this approach is to keep generating
test cases in a systematic manner to progressively increase or
decrease the workloads so that the changes in the behaviour
of the application can be observed. In the future, we intend to
make the specification of test cases configurable through a UI
instead of having to write these loops manually.

1 ’’’Generate Temp and Light Sensors’’’
2 for i in range
3 (’0’,’self.temperature_sensors_per_test_case’):
4 self.DeviceServiceTemperature
5 .addVirutalIoTDevice

(’self.IoTLinearRegressionLoadbalancer’
6 ,’self.IoTLinearRegressionMonitorManager’)
7 self.target_active_producers =

’self.target_active_producers + 1’
8 ’’’Generate IoT Cameras’’’
9 for i in range

10 (’0’, ’self.camera_sensors_per_test_case’):
11 self.DeviceServiceCamera.addVirutalIoTDevice

(’self.IoTLinearRegressionLoadbalancer’,
’self.IoTLinearRegressionMonitorManager’)

12 self.target_active_producers =
’self.target_active_producers + 1’

Figure 10: generateTestCase()

1 if experiment_type == ’mix’:
2 self.temp_sensors_per_test_case =

int(round(10/11 *
Regression(’training_data/mix’)
.getGenerateTestCase
(’self.targetCPUUtilization’)))

3 self.cam_sensors_per_test_case =
int(round(1/11 *
Regression(’training_data/mix’)
.getGenerateTestCase
(’self.targetCPUUtilization’)))

4 self.setApplicationToMonitor
5 (’IoTMonitorType.kafka’)

Figure 11: configureExperiment()

A new if statement in the configureExperiment() method can
be added if a new type of experiment is required. As shown
in Figure 11 (line 1), the name of experiment can be set. In
this example, it is called mix, meaning its a combination of
two different types of devices. This setting will result in an
experiment that involves creating different types of virtual IoT
devices. In Figure 11 (lines 2 and 3), we use the regression
library and the training data to get the number of devices we
should create in a test case. The next step in configuring the
experiment is to determine what application to monitor when
executing test cases. As shown in Figure 11 (lines 4 and 5),
we are monitoring the resource metrics of the Kafka broker.

E. Creating new IoT Devices

Virtual IoT devices in EMU-IoT are encapsulated as Docker
images. They are independent and self-contained just like
physical IoT devices. Therefore, to create a new device for a
specific application/experiment the proposed device needs to
adhere to the minimum requirements as described in Section
III-B. To recap, the requirements are to have a configuration
interpreter, a data generator and a data forwarder. A program
needs to be running inside the Docker container that can accept
configuration arguments, application logic that will generate

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

data similar to a physical IoT device, and a way to transmit
that data. The configuration parameters are passed to the
Dockerized IoT device in EMU-IoT as shown using Python
on lines 4-9 in Figure 12.

1 self.IoTProducerBinding.NodeDockerRemoteClient
2 .containers.run("sensorsim:latest"
3 detach=True,
4 environment={’PI_IP’:

self.destination_gateway_ip,
5 ’PI_PORT’:

self.dest_virtual_gateway_port,
6 ’NUM_MSG’:

self.number_of_msg_to_send,
7 ’SENSOR_ID’: self.IoTDeviceName,
8 ’DELAY’:

self.producer_device_delay},
9 name=self.IoTDeviceName

10)

Figure 12: Create an IoT Device

In our example, we created a temperature sensor, for which
we wrote a program in C that emits integer values every second
and does an HTTP POST to a virtual gateway. On the gateway
side, we used Node-RED8 to create a small footprint web
server that receives this data and then forwards it to a message
broker. More details can be found in our GitHub repository.

V. RESULTS

In this section we present the results of the experiments
that we ran based on the example IoT application described
in Section IV. The purpose of these experiments is to demon-
strate the experimental capabilities of EMU-IoT and how we
overcome several of the challenges described in Section II.
We tackle these challenges by deploying configurable devices
across a geographically dispersed infrastructure that can be
scaled to execute experiments with hundreds of IoT devices.

In these experiments we perform bottleneck detection at the
Kafka message broker shown in Figure 13. We also present a
brief cost analysis that shows how much time and money can
be saved by using the emulator.

The experiments consist of two phases. First, historical
data is collected to profile the application by performing an
exhaustive search, in the form of load tests, measuring the
CPU utilization of the running IoT application and the number
of sensors that are driving traffic to that application. In the
second phase, the historical data is used to build a performance
model of the application and make predictions to determine
the number of IoT devices that would cause the application to
reach a particular target CPU utilization. Then, experiments are
executed to validate the prediction accuracy by instantiating
these devices and measuring the CPU utilization. While we
examined only CPU utilization as an input to the model, it
is certainly possible to include other factors such as disk IO,
memory usage, etc.

8https://nodered.org/

Figure 13: Example IoT Application

Figure 14: Exhaustive Search IoT Camera and Temperature + Light
Devices

As shown in Figure 13 the experiment is heterogeneous,
meaning we have two different types of IoT devices which
have different traffic patterns. The Smart Testing Framework
is used to generate test cases autonomically, with each test case
consisting of 10 IoT temperature devices and 1 IoT camera.
The results of the exhaustive search are shown in Figure 14.
We executed 10 runs to search for the number of IoT devices
required to consume 50% of the CPU resources at the Kafka
broker. We can see that it requires approximately a total of 230
devices (210 IoT temperature + 20 IoT cameras) to consume
50% of the available CPU resources.

Using the data collected in the exhaustive search experi-
ment, we computed a regression function as shown in Figure
15. We used this function to make predictions about the
number of devices required to consume 60% and 70% of the
CPU resources of the machine that Kafka is located on. The
model predicted 301 and 362 devices, respectively.

We ran experiments with the predicted number of devices
and measured the CPU utilization. The results of the experi-
ments as depicted in Figure 16a and Figure 16b show that the
model produces fairly accurate predictions as compared to the
actual CPU utilization. The red line across the graph is the
target CPU utilization target and the blue bars are the actual
observed values on each of the 5 runs.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

Figure 15: Regression IoT Camera and Temperature + Light Devices

(a) Prediction Accuracy @ 60% CPU

(b) Prediction Accuracy @ 70% CPU
Figure 16: Prediction Results

A. Cost Analysis

All the devices that were created in this experiment are
virtualized which provides considerable cost savings over
having to acquire the physical devices. For example, to run
the 70% CPU usage prediction experiment a total of 362 IoT
devices would have been needed. The total cost of running this
experiment with typical consumer grade physical IoT devices
would be $33,741.38 as shown in Table I9 10. Devices that are
industrial grade quality would be even more expensive. Also,
there would be the additional costs of deploying the physical
devices. As EMU-IoT can be quickly deployed in the cloud,

9https://www.lorextechnology.com/4k-security-camera/
4k-ultra-hd-8mp-noctunnal-ip-camera/LNB8921BW-1-p

10https://store.ubibot.io/collections/the-ubibot-product-family/products/
ubibot-ws1

the compute resources required to execute this experiment in
Amazon EC2 were very minimal as shown in Table II.11

IoT Device Type Unit Cost Quantity Total Savings

Temp and Light $79.99 329 $26,316.71
Camera $224.99 33 $7,424.67

Table I: IoT Device Savings

Instance Type Quantity $/hour Hours Total Cost

a1.2xlarge 2 $0.0394 8 $0.63
a1.xlarge 5 $0.0197 8 $0.78
a1.large 1 $0.0098 8 $0.08

Table II: Compute Resource Cost

VI. RELATED WORK

There have been several initiatives towards creating tools
that can reliably and accurately simulate IoT networks.
Chernyshev identified 3 types of IoT simulators that are
actively being researched [11]: Full stack simulators, Big
Data Processing simulators and Network simulators. Full stack
simulators are defined as simulators that provide end-to-end
support for devices and applications. Big Data simulators focus
on using cloud computing resources for big data processing in
an IoT context. Lastly, Network simulators focus on network
traffic and evaluating different protocols that are typically used
in IoT networks. Our approach is to combine all three types
of simulators to create a comprehensive solution.

In the full stack category, a simulator called DPWSim
allows users to define and create simulated IoT networks [2].
It provides a robust set of tools, however the platform is
limited to using DPWS (Devices Profile for Web Services)
standards which is based on WSDL. Our goal is to create
a tool where any communication standard can be used. In
addition to singular protocol being used in DPWSim, it also
implements the SOAP protocol, which is mainly used in defin-
ing message exchange rules between enterprise applications.
SOAP messages incur a large amount of overhead by design.
IoT protocols are typically designed to be lightweight due
to limited available processing power and bandwidth. In our
work, the goal is to implement emulated devices that use
IoT type protocols such as messaging over MQTT or HTTP.
Also, in the full stack category we have iFogSim which
allows for end-to-end simulation of devices, edges and the
processing infrastructure for IoT networks [12]. While this
toolkit provides all the features of a simulation environment,
it does not use the actual hardware to execute the simulation
making the results of experiments difficult to compare with
a physical system. Our work improves upon this model by
providing a tool that can be executed on the actual network
where the real system will run on.

In the big data simulator category, there is IoTSim and
SimIoT. In the case of IoTSim, it does provide the capability

11https://aws.amazon.com/ec2/spot/pricing/

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

to simulate large scale IoT networks but has two major
drawbacks [4]. The first limitation of IoTSim is that the
workload generation process is only based on the MapReduce
model. While this is a common scenario when processing
IoT data, many other types of scenarios exist. For example,
image recognition of live video streams requires a completely
different set of steps necessary to analyze the data as compared
to batch processed numerical data such as those generated
from environmental sensors. Moreover, this limitation leads
to the inability to emulate heterogeneous IoT networks, since
they can only support devices that generate MapReduce type
data. In our approach, we have an emulator that is capable
of evaluating the performance of any IoT big data application
as long as it can be containerized. The second limitation of
IoTSim is that it cannot be executed in the actual environment
as it is also an extension of CloudSim, meaning it has the same
limitation as the previously mentioned simulator, iFogSim.
This is a significant drawback, because big data applications
all behave differently depending on what type of hardware is
available to them. In the case of SimIoT, this platform also
lacks support for heterogeneous IoT networks [13]. This is
a key characteristic of IoT networks, where many types of
devices are present. As previously mentioned, in our approach,
the platform currently supports any type of software-defined
version of an IoT device without requiring changes to the
underlying platform. SimIoT also lacks the ability to track
QoS metrics to drive network optimization such as adding or
removing computing resources. In our approach, we solve this
by implementing a smart testing framework.

Network simulators are also being repurposed for IoT
simulation.. Network simulation is a well-researched area
that predates IoT research by several decades, so it makes
sense that tools originally designed to simulate network traffic
are being extended to support IoT network research. One
such popular tool is CupCarbon, which has been extended
to include IoT features for emulation [1]. While this emulator
can execute a simulation on real hardware, it is limited to
running on Raspberry Pi and requires modification to work
on any new platform. One of our goals is to make our
emulator platform agnostic, so that it can be installed on any
cloud provider. Another popular tool is Cooja which is used
primarily for simulating wireless sensor networks [3]. This
simulator overcomes the limitations of CupCarbon but it only
allows simulation of the devices and not the applications that
process the sensor data. This necessitates the need for another
simulator to handle the data ingestion functions, thus making it
difficult to evaluate an end-to-end scenario on an IoT network.

VII. CONCLUSION AND FUTURE WORK

We presented the design and implementation of a new
platform that provides users with an environment to execute
and experiment with large scale IoT networks without the high
capital costs associated with a physical deployment. We pro-
vided a methodology for designing reliable and configurable
software defined virtual sensors. We also provided a systematic

process for using the virtualized IoT devices along with IoT
applications to stress test IoT networks from end to end.

We intend to support new IoT device types by using the
generic framework we defined in EMU-IoT for creating new
devices. An example of such devices could be vehicles that
generate a variety of data from a collection of sensors. Our
architecture is currently capable of processing this type of data.
Other device types we plan to support are IoT devices that
are configurable at runtime. This would give us the ability to
change the behavior of the device according to an operation
plan. An example of this type of device would be a smart
home thermostat. Moving forward into the future, the number
and variety of IoT devices is expected only to grow. To
accommodate this growth, we have designed our platform to
be extendable to model these future scenarios.

REFERENCES

[1] A. Bounceur, O. Marc, M. Lounis, J. Soler, L. Clavier, P. Combeau,
R. Vauzelle, L. Lagadec, R. Euler, M. Bezoui, and P. Manzoni,
“Cupcarbon-lab: An iot emulator,” in 2018 15th IEEE Annual Consumer
Communications Networking Conference (CCNC), Jan 2018, pp. 1–2.

[2] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. V. Luong, M. Brut, and
P. Gatellier, “Dpwsim: A simulation toolkit for iot applications using
devices profile for web services,” in 2014 IEEE World Forum on Internet
of Things (WF-IoT), March 2014, pp. 544–547.

[3] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with cooja,” in Proceedings. 2006 31st
IEEE Conference on Local Computer Networks, Nov 2006, pp. 641–648.

[4] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos,
and R. Ranjan, “Iotsim,” J. Syst. Archit., vol. 72, no. C, pp. 93–107, Jan.
2017. [Online]. Available: https://doi.org/10.1016/j.sysarc.2016.06.008

[5] G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, and R. Ranjan, “Modelling
and simulation challenges in internet of things,” IEEE Cloud Computing,
vol. 4, no. 1, pp. 62–69, Jan 2017.

[6] B. Ramprasad, J. McArthur, M. Fokaefs, C. Barna, M. Damm, and
M. Litoiu, “Leveraging existing sensor networks as iot devices for smart
buildings,” in 2018 IEEE 4th World Forum on Internet of Things (WF-
IoT), Feb 2018, pp. 452–457.

[7] M. Chan, E. Campo, D. Estève, and J.-Y. Fourniols, “Smart
homes — current features and future perspectives,” Maturitas,
vol. 64, no. 2, pp. 90 – 97, 2009. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0378512209002606

[8] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “Diane
- dynamic iot application deployment,” in 2015 IEEE International
Conference on Mobile Services, June 2015, pp. 298–305.

[9] G. Rawal, “Costs, savings, and roi for smart building implementation,”
Jun 2018. [Online]. Available: https://blogs.intel.com/iot/2016/06/20/
costs-savings-roi-smart-building-implementation/#gs.GGIJbNcg

[10] B. Ramprasad, J. Mukherjee, and M. Litoiu, “A smart testing framework
for iot applications,” in 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion), Dec 2018,
pp. 252–257.

[11] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things
(iot): Research, simulators, and testbeds,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1637–1647, June 2018.

[12] H. Gupta, A. VahidDastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.
2509

[13] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee, “Towards
simulating the internet of things,” in 2014 28th International Conference
on Advanced Information Networking and Applications Workshops, May
2014, pp. 444–448.

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:47:23 UTC from IEEE Xplore. Restrictions apply.

