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Abstract—Web services hosted on public cloud plat-
forms are often subjected to performance anomalies.
Runtime detection of such anomalies is crucial for
operations in cloud data centers. With ever-increasing
data center size, complexities in software applications
and dynamic traffic workload patterns, automatically
detecting performance anomalies is a challenging task.
In this paper, we propose RAD, a lightweight runtime
anomaly detection technique that does not require
application level instrumentation and can be easily im-
plemented for detecting anomalies in multi-tier cloud-
based Web services. In particular, we focus on anoma-
lies that are difficult to detect by simply monitoring
system level metrics alone, such as anomalies that
are caused by contention from within a service and
also those caused by shared resource contention by
other services running on the cloud. RAD continuously
monitors service resource metrics and uses a queuing
network model to detect performance anomalies at
runtime. Additionally, RAD uses historical data and
implements a statistical methodology to diagnose the
root cause of an anomaly. We evaluate RAD on a
private cloud and also on the EC2 public cloud plat-
form to show that RAD incurs extremely low levels of
performance overhead on the service and is effective
for detecting anomalies in both multi-tier monolithic
services and microservices.

I. Introduction

Given the ever-increasing scale of data centers along
with the increasing complexity of cloud abstraction, soft-
ware architecture and dynamic workload patterns, it is
important to maintain the performance of services hosted
on the cloud at runtime without the need for manual
intervention. Services running inside the cloud are of-
ten prone to performance anomalies due to reasons such
as software bottlenecks, shared resource contention, and
hardware failures [1], [2], [3], [4].
A performance anomaly is a deviation from a predefined

performance profile and can manifest as an unexpectedly
high request response time or/and a reduced request
throughput. Anomaly causes can be broadly divided into
two categories: internal and external. Internal causes
include software bottlenecks such as unavailability of soft-
ware resources and bugs in application code. They can
also include hardware bottlenecks such as CPU hogging
and resource capacity saturation. External causes, also
known as performance interference, include resource
contention by services belonging to other cloud subscribers
that are competing for hardware or software resources
and can lead to huge performance degradation [5] in

Web services. Automatically detecting these anomalies at
runtime and their causes is crucial for maintaining the
performance of these services.
Detecting internal and external anomalies is challenging.

Cloud providers typically do not offer built-in mechanisms
to continuously monitor and detect different kinds of
performance anomalies at runtime. Consequently, cloud
subscribers need to deploy their own mechanisms to detect
and diagnose performance issues. This is difficult since
cloud subscribers do not have access to host physical
machine (PM) level metrics and thereby can not use
hardware counters to detect anomaly as done in the past
[6], [7], [8].
Anomaly detection techniques [9], [10] proposed earlier

have focused on instrumenting performance metrics such
as request response times. However, such application-level
instrumentation for a complex multi-tier service can be
difficult to implement and can significantly increase the
cost of development and maintenance. Past research has
addressed the problems of instrumenting application code
and continuously monitoring the time taken by various
tiers of the service [11]. In addition, continuous monitoring
of service response times can incur a prohibitive overhead
when the application is facing a heavy workload [12],
[13]. Finally, monitoring only the request response times
of a service is not enough to diagnose why the anomaly
occurs. This is important to understand since anomalies
that are caused by software bottlenecks and internal bugs
in the application code cannot be mitigated by simply
scaling the service. This necessitates techniques that do
not require extensive service level instrumentation, have
low performance overhead and enable diagnosing the root
cause for the anomaly.
In this paper, we present a novel Runtime Anomaly

Detection (RAD) approach for cloud-based multi-tier
Web services. RAD implements the idea of a twin work-
load, which is a representative sample of the service work-
load, and is used to infer whether the service is currently
experiencing anomalous behaviour. The twin workload is
continuously submitted to the service at runtime in a
controlled manner so as to result in minimal performance
overhead. RAD monitors the twin’s request response times
along with system metrics that can be easily collected
from inside the service virtual machines (VMs). Using
a Queuing Network Model for the twin workload, RAD
compares the runtime response time of the twin to its
model predicted baseline response time in absence of an
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Fig. 1. Overview of RAD

anomaly. RAD indicates the presence of a performance
anomaly if there is a statistically significant deviation
between these two. Once an anomaly has been detected,
RAD finds the root cause of the anomaly. In case of an
internal anomaly, RAD isolates the software component
or the service tier or the request URL that triggers the
anomaly using historical data collected from the system.
We validate RAD on a private cloud setup as well as on

the Amazon EC2 public cloud platform. We first validate
RAD against anomalies induced by internal causes, specifi-
cally software resource saturation bottlenecks [4] caused by
improper software configuration as well as internal applica-
tion bugs such as a slow database queries [11], [14]. We also
validate RAD against anomalies due to external causes,
for e.g., performance interference from other services in a
public cloud platform. We use two well-known Web service
benchmarks for validating RAD: a monolithic multi-tier
Web application called RUBiS [15] and a Web microservice
called Acme Air [16]. RAD outperforms existing anomaly
detection techniques and successfully detects internal and
external anomalies while incurring extremely low levels of
performance overhead on the service.

II. RAD
In this section, we present an overview of the RAD

technique. Figure 1 shows the high level details of RAD.
As seen in the figure, RAD is implemented inside a RAD
VM that is hosted on the same cloud platform as the
Web service VMs. The n Web services of the application
are hosted on VM-1 to VM-n. The RAD VM hosts the
three main RAD components, namely the RAD monitor,
the RAD controller and the RAD traffic mirror. Next, we
describe the workings of these components in more detail.

A. RAD Monitor
The RAD monitor is in charge of continuously mon-

itoring the service VMs, collecting service and system
level data from inside the VMs (step 1 in Fig. 1) and
sending this data to the RAD controller (step 2 in Fig.
1). Specifically, the RAD monitor collects the following
data for each sampling interval: URLs of incoming requests
to the service, resource utilization values from each of
the n VMs hosting the n-tiered service, and the software

parallelism level in each VM. The software parallelism
level is service dependent and refers to the number of
active threads, processes, containers or connections in a
software pool at each service level. In our case, the RAD
monitor collects the number of active software threads
from the top P processes running in each VM as the
software parallelism level. The RAD monitor aggregates
the data and passes this information to the RAD controller
over a sampling interval. We choose the sampling period
in a way such that the RAD monitor incurs only a small
performance overhead on the service.
The RAD controller uses the data collected from the

RAD monitor over a sampling interval in the following
manner. First, the RAD controller instructs the RAD
traffic mirror to submit the twin workload (step 3 in
Fig. 1) to the service (step 4 in Fig. 1) and collects its
request response times (step 5 in Fig. 1). This data is next
passed to the RAD controller (step 6 in Fig. 1) which then
uses this information for anomaly detection decisions, as
described in Section II-C.

B. RAD Traffic Mirror
The RAD traffic mirror allows us to estimate the re-

sponse time of the service at runtime without instrument-
ing the service directly. To this end, the RAD traffic mirror
implements the concept of a twin workload, which is a
representative collection of the service URLs. The twin
workload is constructed once in a pre-deployment stage
and is continuously submitted to the service at runtime.
Note that the RAD traffic mirror substitutes all user
information in the twin workload with a RAD user that is
specially created for this purpose. Doing so allows for user
anonymity and does not require transaction rollbacks. We
follow the tuning process suggested in past work [17] to
adjust the workload intensity of the twin workload such
that it imposes very little overhead on the service being
monitored.

C. RAD Controller
The RAD controller aggregates and analyses data from

the RAD monitor and the RAD traffic mirror to detect
and diagnose performance anomalies at runtime. To this
end, the RAD controller first constructs a QNM in an
offline model construction phase prior to deploying the
service. The QNM represents a simple generic queuing
model that does not take into account performance anoma-
lies such as software bottlenecks and interference. Next,
the controller uses the constructed QNM at runtime for
predicting the request response times of the twin workload.
Since the QNM captures only hardware contention in the
system, if the model predicted response time of the twin
shows statistically higher deviation than the measured
runtime response time of the twin, we infer the presence
of performance anomalies such as software bottlenecks or
interference.
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The RAD controller continuously monitors and archives
system data from the RAD monitor as well as the runtime
and QNM predicted response times of the twin workload
at each interval for making anomaly detection decisions
and diagnosing its root cause. In a given sampling in-
terval, the anomaly detection algorithm first compares
the QNM predicted baseline response time of the twin
against its runtime response time to infer the presence of
anomalies, if any. If an anomaly is detected, the algorithm
next proceeds to isolate its root cause. To this end, the
algorithm looks at historical data collected at a similar
service workload mix in the absence of anomalies in the
system. A service workload mix is defined by the number
and type of requests belonging to each user connection and
the arrival rate of user connections into the system. From
this historical data, the controller then constructs software
parallelism and twin workload URL response time groups
and compares them against the corresponding runtime
software parallelism levels and twin URL response times.
Using standard statistical outlier detection techniques, the
algorithm isolates the software component or the URL
that triggers the anomaly. The details of the queuing
network model and the anomaly detection algorithm are
discussed next in Sections II-C1 and II-C2, respectively.
1) Queuing Network Model: QNMs model a system as

a network of queues where each resource in the system
represents a queue. We implement our QNM as a multi-
class, product-form, model with two classes of workloads.
Class a represents the service workload whereas class t
represents the twin workload. The twin workload class t is
modeled as an open class with arrival rate λt connections
per second (cps). As mentioned previously, the n-tiered
service is hosted on n cloud instances or VMs with each
tier in its own VM. Each VM m is assumed to have K
resources in total. The inputs to the QNM are the arrival
rate of class t, i.e. λt, and the total utilization Uk of each
resource k in m. The output of the QNM predicts the
baseline response time of the twin workload over each
sampling interval at runtime.
For using the QNM at runtime, the RAD controller

has to first estimate the resource demands of the twin
workload. This needs to be done only once in an offline
model construction phase prior to service deployment. In
this phase, the twin workload is submitted to the service
at a known arrival rate λt over the duration of a sampling
interval. eq. 1 estimates the service demand ˆDm

t,k of a
resource k caused by a twin workload class t in VM m.
The average residence time ˆRm

t,k, i.e., the total time spent
by a connection belonging to class t at resource k in VM
m, is estimated as shown in eq. 2. Finally, the response
time R̂t of a connection belonging to class t is estimated
using eq. 3, which is the sum of residence times of the
connection at all K resources in VM m taken over n VM
tiers. The controller also obtains the average response time
Rt of the twin workload in the interval during the offline
model construction phase.

ˆDm
t,k =

Um
t,k

λt
(1)

ˆRm
t,k =

ˆDm
t,k

1−Uk
(2)

R̂t =
n∑

m=1

K∑

k=1

ˆRm
t,k (3)

Next, the RAD controller revises the estimated service
demand ˆDm

t,k of the twin workload to match with its real
service demand. In our experiments, we found that the
observed values of Rt for the twin workload is always
higher than the estimated values of R̂t. In light of this
observation, we propose a calibration of ˆDm

t,k based on the
estimated and observed values of R̂t and Rt as given by
eq. 4

ˆDm,r
t,k = Dm

t,k × Rt

R̂t

(4)

Next, the RAD controller uses the estimated revised
demand ˆDm,r

t,k of the twin workload for predicting the
baseline average connection response time R̂t of the twin
workload at runtime. To this end, the controller substi-
tutes ˆDm

t,k with the new revised estimates of ˆDm,r
t,k in eq. 2

and eq. 3 to predict R̂t. As shown later in Section IV-A, we
validate that the predicted runtime response times of the
twin workload using the revised demand estimates closely
matches the twin’s monitored runtime response times in
the absence of anomalies.
2) Anomaly Detection Algorithm: The RAD controller

employs an anomaly detection algorithm to detect soft-
ware performance anomalies at runtime. For a sampling
interval i, the response times of each of the S URLs of
the twin workload at second m in sampling interval i is
represented as a tuple Ri,m as shown in eq. 5. The number
of active software threads from the top P processes in
each VM for all n VMs in the system at second m in i
is represented as a group of the software parallelism level
in a tuple Ci,m as shown in eq. 6.

Ri,m =< Ri,m
1 ,Ri,m

2 ...Ri,m
S > (5)

Ci,m =< Ci,m
1 ,Ci,m

2 ...Ci,m
N > (6)

where, N = n×P .
We now describe the RAD algorithm in detail as shown

in Algorithm 1. The algorithm calculates the 95% confi-
dence interval (CI) of the average response time of all S
URLs in the twin at each second m in an interval i, along
with the twin’s non-anomalous QNM predicted baseline
average response time R̂t. Next, it uses standard statistical
outlier detection techniques to see if the runtime response
time of the twin is statistically higher than R̂t. If so, an
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Algorithm 1 RAD algorithm
1: for < each sampling interval i > do
2: Ri,m

avg ← ∑S
x=1 Ri,m

x /S

3: Ri
avg ← ∑T

m=1 Ri,m
avg/T

4: calculate 95% CI of Ri,m
avg in i

5: calculate R̂t in i using QNM
6: if ((Ri

avg > R̂t)&R̂t �∈ (95% CI of Ri,m
avg)) then

7: find j intervals from history with same
8: mix where R̂t ∈ (95% CI of Ri,m

avg)
9: do

10: Cnormal = {< C1
1 ..Cj

1 >,.. < C1
N ..Cj

N >}
11: Rnormal = {< R1

1..Rj
1 >,.. < R1

S ..Rj
S >}

12: done
13: for seconds in i where Ri,m

avg > R̂t

14: do
15: Canomaly = {C1,an,C2,an...CN,an}
16: Ranomaly = {R1,an,R2,an...RS,an}
17: done
18: for < r = 1 to N > do
19: if Cr,an in Canomaly is an outlier
20: w.r.t. the rth tuple in Cnormal then
21: Flag Anomaly
22: Flag V M and process corresponding
23: to r as root cause of anomaly
24: for < k = 1 to S > do
25: if Rk,an in Ranomaly is outlier
26: w.r.t kth tuple in Rnormal

27: then
28: Flag URL corresponding to
29: Rk,an as root cause
30: end if
31: end for
32: end if
33: else
34: Run probe for detecting interference
35: end for
36: end if
37: end for

anomaly is detected in the system and the RAD algorithm
proceeds to infer the root cause of the anomaly.
To infer the root cause, the algorithm first looks at

historical data to find j non-anomalous sampling intervals
with the same service workload mix. From these intervals,
the algorithm groups past software parallelism levels and
URL response times obtained from the system in absence
of anomaly in lists Cnormal and Rnormal, respectively.
Next, the RAD algorithm groups corresponding anoma-
lous system data in lists Canomaly and Ranomaly from the
current sampling interval i. The algorithm then compares
each element in Canomaly with its corresponding element
in Cnormal. If the rth element in Canomaly is identified
as a statistical outlier in comparison to the rth element in
Cnormal, the algorithm flags the VM and the software pro-

cess corresponding to the rth element in Canomaly as the
probable root cause related to the anomaly. As part of the
root cause analysis, the RAD approach also investigates if
the root cause is associated with increased response times
of specific URL(s). To this end, the algorithm compares
each element in Ranomaly with its corresponding element
in Rnormal. If the kth element in Ranomaly is identified
as a statistical outlier in comparison to the kth element in
Rnormal, the algorithm infers that the anomaly impacts
the response time of the kth URL in the service workload
mix.
If no internal anomalies are detected, the RAD algo-

rithm next checks to see if the root cause of the anomaly
is caused by an external bottleneck, i.e., performance
interference. For this purpose, RAD utilizes past research
[17] by running a low overhead software probe in each
service tier along with the service for the period of a
sampling interval. The probe represents a Web micro-
benchmark that is designed to utilize the system resources
at each tier. By subjecting the probe micro-benchmark to
a controlled workload, RAD imposes minimal overhead
on the service response time. RAD first estimates the
baseline no-interference response times of the probe at
various levels of resource utilization by using a dedicated
instance in an offline phase prior to service deployment,
similar to Section II-C1. Next, using the same statistical
outlier detection technique as before, RAD compares the
runtime response time of the probe against its estimated
baseline response time for detecting the presence of an
external anomaly.

III. Experimental Setup and Anomalies
A. Private Cloud Setup
The private cloud setup consists of a dual socket Intel

Xeon E5645 server host with 6 cores per socket. Multiple
VM instances are consolidated on this server where each
instance is configured with 1 virtual CPU (VCPU) and 1
GB of physical memory. We consider a 2-tier Web service
for our private cloud experiment setup. As mentioned
earlier, each tier of the service is hosted inside an instance.
To this end, we spin 2 instances on 2 sockets of the server
with each instance pinned to a socket. We use another
identical server to host the RAD VM. The RAD monitor
inside the RAD VM monitors the resource utilization
metrics every second for the following resources in each
service instance: VCPU, memory, disk, network. The RAD
monitor also collects data regarding the service workload
mix by instrumenting the service Web server and recording
the URL information received by the service in a sampling
interval. Note that this is easy to do since it involves
instrumentation at only the instance hosting the Web
server tier for the service. In our case, we activate Web
server logging in the Web tier instance to record the URL
information for our service. Finally, the RAD monitor
collects the number of active software threads from the
top 10 processes in each instance. We note that the RAD
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monitor does not impose any considerable overhead either
on the service or on the RAD VM.
The RAD traffic mirror runs the httperf [18] workload

generator tool inside the RAD VM to submit the twin
workload. The twin workload is submitted to the system
by the RAD traffic mirror using httperf at the rate of C
HTTP connections per second (cps) with an exponentially
distributed inter-arrival time over the sampling interval of
T seconds. We configured the workload twin with C = 2
cps and T =10 seconds since we observed that these values
for the workload twin incur a maximum of 2−3% response
time overhead on the service.

B. EC2 Setup
We use the EC2 setup to validate RAD with a Web

microservice benchmark in detecting performance anoma-
lies such as performance interference, which is a common
anomaly in public cloud platforms. To this end, we use 3
m4.large instances in EC2. Similar to our private setup,
we consider a Web microservice benchmark with 2 tiers
or microservices for the EC2 setup. Each microservice
is configured as a Docker container in a m4.large EC2
instance. We host the RAD VM in a separate m4.large
instance. The configurations for the RAD monitor, the
RAD traffic mirror and the RAD controller are the same
as that used in Sec. III-A before. We confirm that these
settings impose a negligible maximum overhead of 2−3%
on the service’s request response time.
As described in Section II-C2, RAD runs a probe micro-

benchmark in each service tier over the short duration of
one sampling interval to confirm the presence of inter-
ference. To this end, the probe runs a Docker container
in each instance executing a synthetic micro-benchmark
which incurs exponentially distributed resource demands.
We verify that running the probe container along with
our microservice containers incurs a maximum overhead
of only 3−4% on the service’s response time.

C. Web Service Benchmarks
We consider two different Web services for evaluating

the RAD approach. The first Web service is a 2-tier Web
benchmark called RUBiS. The 2 tiers in RUBiS are called
the Web tier and the database tier respectively and are
hosted on 2 separate VMs running on our private cloud.
We use the default browsing transaction workload mix
specified by RUBiS which emulates 5000 users issuing a
series of 14 inter-dependent requests to the Web tier VM.
We also configure a database transaction mix for RUBiS
where a majority of user requests query the MySQL
RUBiS database in the database tier VM.
The second service is an open source Web microservice

benchmark called Acme Air that emulates transactions
for an airline website. We use 2 microservices to host
the Acme Air service inside 2 EC2 instances. Both these
microservices are run inside Docker containers on the
instances. The workload transaction mix submitted to

Acme Air is the default workload obtained from the official
Acme Air project [19].

D. Performance Anomalies
1) Software Configuration Anomaly: We now discuss

the performance anomalies we consider. We inject a soft-
ware bottleneck anomaly within the RUBiS benchmark
in our private cloud setup that occurs due to improper
configuration at the software level [20], [4]. We configure
the maximum number of Apache threads to 40 in the Web
tier VM, which implies that any user request that arrives
at the Web tier VM when there are already 40 or more
concurrent requests will get queued at the software level
waiting for additional Apache threads to be spawned. Con-
sequently, the average request response time will increase
since some of the incoming requests will have to wait for
a longer time due to unavailability of software threads.
To demonstrate the impact of this anomaly, we conduct

an experiment where we run 2 tests. Both tests submit
the browsing workload mix to the RUBiS benchmark at
the same connection arrival rate. However, in the sec-
ond test, the persistent connections setting in Apache
is enabled which causes a higher number of concurrent
Apache threads in the Web tier VM. Once the number
of concurrent connections at the Web tier is higher than
the maximum limit of Apache threads configured, a soft-
ware bottleneck anomaly is created. The results of the
experiment are shown in Table I. As seen in the table, the
average response time of a request in the RUBiS browsing
mix is significantly higher when the persistent connection
configuration is set to On.
From our experiment results, we note that detecting a

software configuration anomaly is challenging. As seen in
Table I, the arrival rates in both cases are configured to
the same value of 10 cps. Consequently, the average CPU
utilization values at the Web tier VM with and without
enabling persistent connections are very similar to each
other. Other hardware resource utilization values collected
at both tiers also do not show any significant change in
both cases. Simply monitoring the incoming user arrival
rate and the resource utilization metrics in the system
will not indicate the presence of this anomaly. This show
the need for an intelligent model-driven technique such as
RAD.
2) Query Latency Anomaly: The second software bot-

tleneck anomaly we consider is an anomaly caused by
a latency in a database query as reported in previous
work [11], [14]. We inject a sleep delay of 1 second in the
SearchItemsbyCategory.php script that invokes a MySQL
query to the database tier VM. As a result, a MySQL
query initiated by this script takes a long time to complete
and causes subsequent MySQL queries to queue in the
database tier.
We conduct two sets of tests in our private cloud

setup using the database workload mix configured with
and without the latency delay in the SearchItemsbyCate-
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TABLE I
Software Configuration Anomaly

Workload
Mix

Arrival Rate
(cps)

Persistent
Connection

Response
time (ms)

CPU
Utilization(%)

Concurrent
Requests

browsing 10 Off 5.8 17.8 19
browsing 10 On 31.9 18.4 115

TABLE II
Query Latency Anomaly

Workload
Mix

Arrival
Rate (cps)

Query
Latency

Response
time (ms)

Web tier
CPU U(%)

DB tier
CPU U(%)

Apache
Threads

MySQL
Threads

database 10 Off 14.2 36 67 751 71
database 10 On 133.7 28 41 840 384

gory.php script. Table II shows the results of our experi-
ments. As seen in the table, the average request response
time of the database workload mix in RUBiS increases
by 40% when a query latency delay is introduced. Similar
to the software configuration anomaly, the query latency
anomaly is challenging to detect since it manifests at the
same arrival rate for the same database workload mix.
Moreover, as seen in the table, the average CPU utilization
in the Web and database tiers decrease when this anomaly
manifests itself, thereby incorrectly indicating the absence
of a performance problem.
3) Performance Interference Anomaly: Performance in-

terference is an example of an external bottleneck that
can happen on public cloud platforms [17], [5], [21]. We
motivate the performance interference anomaly in the
Acme Air microservice benchmark on our EC2 setup. We
introduce performance interference by running a copy of
the front-end and back-end service containers on the same
EC2 instances as the original Acme Air benchmark. The
incoming request arrival rate to the Acme Air containers
is fixed at 100 cps. We vary the workload to the interfering
containers such that they incur increasing amount of CPU
contention on the instances. Figure 2 shows the effect
of the performance interference anomaly on the response
time of the Acme Air benchmark. As seen in the figure, the
mean request response time of the Acme Air benchmark
increases from 5.7 ms to 25.5 ms when the arrival rate
for the interfering containers increases from 0 to 50 cps.
However, the CPU utilization incurred by the Acme Air
front-end and back-end containers remains unchanged at
40% and 5% respectively. This shows that the performance
anomaly is difficult to detect by monitoring only the
resource utilization levels of the containers.

IV. Results
A. QNM Validation
We first validate the QNM used by RAD on our private

cloud setup. As mentioned previously, the RAD controller
uses the QNM to predict the baseline response time R̂t

Fig. 2. Performance Interference in Acme Air

of the twin workload at runtime. We run an experiment
where the QNM first uses eq. 1, eq. 2 and eq. 3 to estimate
R̂t for the twin workload. However, we We observed a
maximum mismatch of 39% between the R̂t and the
monitored response time Rt values for the twin. We follow
the QNM calibration described earlier in Section II-C1
to improve the QNM prediction. The QNM uses the
values of R̂t and Rt as inputs to eq. 4 to estimate the
revised resource demands for the twin workloads. Next, we
conduct 10 experiments where we estimate R̂t using the
revised resource demand estimates at different workload
arrival rates. Table III shows a subset of the experiment
results. As seen in the table, the R̂t and Rt values of
the twin workload are very close to each other with a
maximum prediction mismatch of around 4% across all
experiments. The QNM is similarly validated in EC2 with
a maximum prediction mismatch of around 5% across all
experiments.

B. RAD in Private Cloud
We now conduct experiments to validate RAD against

the software configuration anomaly and the query latency
anomaly on our private cloud. We conduct two experi-
ments, one for each anomaly, with each experiment set to
a duration of 200 seconds. The RAD sampling interval is
set to 10 seconds.
We first run an experiment where we introduce the soft-

ware configuration anomaly in RUBiS at the 100 second

498

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on April 18,2024 at 16:46:38 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
QNM Validation in Private Cloud

Arrival Rate (cps) R̂t (ms) Rt (ms)
10 5.8 5.9
20 10.6 10.8
30 16.9 17.6
40 22.3 23.7
50 28.7 29.9

Fig. 3. RAD With Software Configuration Anomaly

mark and validate RAD against it. Figure 3 shows the
results of our experiment. As seen in the figure, the mean
request response time of the RUBiS workload remains
steady at around 9.8 ms for the first 160 seconds and
then registers a steady increase up to a maximum value of
156.8 ms due to the software configuration anomaly. Con-
sequently, the monitored mean request response time of
the twin workload also closely matches the response time
pattern of the RUBiS workload. However, the QNM pre-
dicted baseline response time of the twin remains steady
at around 9.6 ms for the entire duration of the experiment.
As a result, RAD correctly indicates the presence of a
performance anomaly in all sampling intervals starting
from 160 seconds.
In addition to correctly predicting the presence of the

software configuration anomaly, RAD also correctly points
to the root cause of this anomaly. In our experiment,
the RAD controller infers that the apache2 thread counts
in the Web tier VM when the anomaly is present is
an outlier when compared to the apache2 thread counts
collected from previous non-anomaly sampling intervals.
Consequently, RAD correctly indicates the Web tier VM
and the Apache2 Web server application as the root source
of the anomaly.
Next, we validate RAD at runtime to see if it can

detect the query latency anomaly in RUBiS. For this
purpose, we design an experiment where we introduce a
query latency delay in RUBiS at the 100 seconds mark.
Figure 4 shows the results of our experiment. As seen
in the figure, the response time of the RUBiS workload
remains steady at around 16.5 ms for the first 100 seconds
and then increases steadily to a maximum of 169.1 ms
after that. Consequently, the monitored response time of

Fig. 4. RAD With Query Latency Anomaly

the twin workload closely follows the response time of
RUBiS. Using the predicted baseline response time of the
twin workload, RAD successfully detects the presence of a
performance anomaly in all sampling intervals beginning
from the 100 seconds mark. Next, RAD uses the software
parallelism level data in these intervals and isolates the
database tier as the root cause of the anomaly since it
shows a statistically high level of parallelism as compared
to past intervals with non-anomalous behaviour. Finally,
RAD compares the anomalous URL response times with
historical data and correctly indicates the SearchItemsby-
Category.php script as the impacted URL.

C. RAD in EC2
We conduct experiments to demonstrate the validity of

RAD on our EC2 setup. To this end, we test RAD against
the performance interference anomaly. We conduct an
experiment such that after 100 seconds from the beginning
of the experiment, we inject the performance interference
anomaly in Acme Air for the next 100 seconds. Figure
5 shows the results of our experiment. As seen in the
figure, the response time of Acme Air remains steady
at around 5.8 ms for the first 100 seconds and then
increases to a maximum of 16.4 ms for the next 100
seconds. Since the monitored response time of the twin
during the last 100 seconds is substantially higher than its
QNM predicted baseline response time, RAD first checks
to see if the anomaly is caused by an internal anomaly
by comparing the runtime system data against historical
data incurred by a similar service workload. Since there
is no statistical difference between these 2 sets of data,
RAD next runs the probe on both instances and compares
the runtime response time of the probe to its estimated
baseline response time. The probe response times show
a statistically significant increase, thus confirming the
presence of interference in the system.

D. Comparison with baseline methods
Past anomaly detection and management techniques

[21] have monitored hardware performance counters such
as cycles per instruction and cache miss rate in cloud
instances. However, public cloud subscribers can not use
these techniques since subscribers do not get access to
hypervisor or host level hardware counters on public
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Fig. 5. RAD With Performance Interference Anomaly

cloud platforms. We verified this behaviour in EC2 where
we were not given access to monitor hardware counters
for our VMs. In the absence of hardware counters, we
validate RAD against threshold-based anomaly detection
techniques, as proposed in prior work [22]. To this end,
we investigate how statically set threshold values on CPU
utilization compare against our RAD technique. We ob-
serve that the average CPU utilization of the VMs in our
private cloud in the sampling intervals before and after
the software configuration anomaly is very similar, varying
between 34.1% to 36.3%. For the query latency anomaly,
the CPU utilization values recorded in the sampling in-
tervals decreased from 52% to 35%. In EC2, we use the
docker stats utility to monitor the CPU utilization of our
Acme containers. The monitored CPU utilization values
for Acme in EC2 before and after the interference anomaly
stayed at around the same values of 42%. Our observations
in both private cloud and EC2 indicate that threshold-
based detection techniques will be unable to infer the
presence of anomalies caused by software bottlenecks and
interference. In contrast, our model-based RAD technique
successfully detects these anomalies.

V. Sensitivity Analysis
In this section, we run experiments to validate RAD

against new software configurations such as an asyn-
chronous Web server in the RUBiS benchmark and an
internal bottleneck such as a query latency anomaly in
the Acme Air benchmark. To this end we use the lighttpd
asynchronous Web server to host RUBiS. We set up 2
experiments on our private cloud where we configure
lighttpd with 1 and 4 processes respectively. We submit
the browsing workload to RUBiS at an arrival rate of
10 cps for 100 seconds in both cases. Table IV shows
the results of our experiment. As seen in the table, the
response time of RUBiS almost doubles when the number
of lighttpd processes in the system increases from 1 to 4.
Note that this is a performance anomaly since the average
CPU utilization in the Web tier during both experiments is
similar. We validate that our RAD approach can correctly
detect the anomaly and its root cause.
Next, we conduct an experiment to show how RAD

can detect the query latency anomaly in Acme Air. To
this end, we run a 200 second experiment where we

TABLE IV
Asynchronous Web Server with RAD

Lighttpd
Processes

CPU
Utilization (%)

Response
time (ms)

1 44.7 18.9
4 47.3 34.3

Fig. 6. RAD With Query Latency Anomaly in Acme Air

introduce an asynchronous query latency of 1000 ms in the
queryflights URL in Acme Air during the last 100 seconds
of the experiment. As seen in Figure 6, the mean request
response time of Acme Air increases from around 6 ms
to 133 ms due to the query latency anomaly. Our RAD
approach is able to successfully detect the query latency
anomaly and isolate the queryflights URL as the impacted
URL.

VI. Related Work

Past work has looked into detecting and predicting per-
formance anomalies caused by hardware bottlenecks. For
example, Tan et al. propose an automated performance
anomaly prevention system called PREPARE [23] that
can predict performance anomalies caused by faults such
as memory leaks, CPU hogs and resource capacity bot-
tlenecks. Cherkasova et al. present an anomaly detection
framework [20] using regression based transaction models
and application signatures to detect anomalies caused by
hardware resource consumption. NAP [24] collects net-
work communication traces and uses a queuing theory
based model to detect anomalies caused by hardware
resource overloading. Similarly, PAL [25] proposes a non-
intrusive anomaly localization system that detects anoma-
lies caused by events such as memory leaks and CPU
hogging. In contrast to these work, RAD specifically looks
at performance anomalies caused by software bottlenecks
and performance interference, which are difficult to detect
since they do not manifest as changes in hardware resource
utilization patterns.
Real time anomaly detection attempts that focus on

software bottlenecks have been reported in several pa-
pers. For example, Jayathilaka et al. present a real time
monitoring and diagnostic framework called Roots [11]
that can identify root cause of performance anomalies
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in Platform-as-a-Service (PaaS) clouds by using a com-
bination of metadata injection and platform-level instru-
mentation. Mukherjee et al. proposes a cloud provider
oriented interference detection technique [26] that involves
running a probe directly on the PM in a cloud platform.
Similar interference-aware techniques were proposed by
others [27], [8] for Web services in public cloud platforms.
In contrast, RAD can be used by cloud subscribers since it
does not need access to underlying platform and PM-level
metrics.

VII. Conclusions and Future Work
In this work, we propose a novel technique called

RAD that can be used by cloud subscribers to detect
performance anomalies in cloud-based Web services at
runtime. In contrast to past work, we focus exclusively on
anomalies caused by software bottlenecks and interference
that are hard to capture using existing techniques. RAD
executes a twin workload and uses the QNM predicted
baseline response time of the twin to infer anomaly. RAD
further investigates the root cause of the anomaly such as
isolating the service tier where the anomaly manifests itself
and the URL responsible for the anomaly. We validate
RAD against frequent anomaly types caused by internal
bottlenecks such as incorrect software configuration and
query latency bottlenecks and external interference. Our
test results show that RAD introduces negligible levels of
overhead and is effective in detecting anomalies in both
private and AWS EC2 public cloud against monolithic
Web services as well as container-based microservices.
In the future, RAD can be extended to include other

commonly found performance anomalies. Specifically, we
will look at performance anomalies that are caused by
other types of software bottlenecks in a system. We will
validate the accuracy of RAD by reporting the false
positive and negative rates as obtained from experiments
done with a larger set of anomalies. RAD can be extended
to cover scenarios where the service is dynamic in nature,
i.e. where the service tiers can scale out and scale in based
on the incoming traffic. Future work will also focus on
evaluating RAD on a larger scale, using a larger number
of cloud instances and microservices.
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