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Abstract— Web services are increasingly being deployed on
cloud platforms. Due to their interactive nature, Web ser-
vices need to ensure fast response times to their end users.
Unfortunately, the performance of a Web service can suffer
due to a sudden surge in incoming traffic. Furthermore, a
cloud-based service can also incur performance degradation
due to interference, i.e., contention among services in the
cloud platform for shared resources. Such issues motivate
the need for automated runtime performance management
solutions that ensure response time goals are continuously met.
This paper explores a control theoretic approach called Model
Predictive Control (MPC) for realizing such a solution. MPC
is based on an optimization formulation, which lends itself
well to expressing multiple constraints related to response time
performance and the amount of resources, e.g., number of
virtual machines (VMs), available to a Web service. We outline
the design and operation of an MPC controller that governs
the scale out and scale in of VMs while adhering to operator-
specified thresholds for mean response time and the number
of VMs available. Using a realistic Web service testbed, we
show that the controller is able to satisfy the specified response
time constraint even when the service is subjected to workload
surges and interference.

I. INTRODUCTION

Cloud computing has been widely adopted by large com-
panies in the past few years. The notion of unlimited
computing resources as well as the convenience offered by
the pay-as-you-use model has attracted many major Web
applications, such as Netflix and Pinterest, to be hosted
on cloud platforms such as Amazon Web Service’s (AWS)
Elastic Compute Cloud (EC2) and Google Compute Engine.

One of the key elements in cloud computing is server
virtualization. To realize resource usage efficiencies, a
cloud provider typically co-locates multiple virtual machines
(VMs) belonging to different cloud subscribers on the same
physical machine (PM). Server virtualization is usually done
by a software layer, implemented on the PM operating
system, called the hypervisor [19]. The hypervisor assigns
each VM a certain share of the processing and input-output
capacity of the PM. Server virtualization can facilitate cost
effectiveness and can leverage on techniques such as live VM
migration to dynamically redistribute workloads.

Unfortunately, virtualization can have adverse effects on
performance. Specifically, virtualized systems can suffer
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from a phenomenon called performance interference where
VMs on a given PM can interfere with each other’s perfor-
mance. This occurs when VMs contend for shared PM re-
sources such as processor cores [10], network interface [20],
and physical memory [14]. Management activities initiated
by the cloud provider such as scheduling or migrating a new
VM on a PM can also cause background noise, which can
lead to performance deterioration in VMs hosted on the PM
[23]. Furthermore, performance degradation in a VM can
also happen because of unexpected surges in the incoming
workload. When performance degradation due to interference
or workload surges is detected, additional VMs need to be
provisioned to maintain desired performance.

Such performance issues can be especially challenging
for cloud-based Web services where end users expect fast
response times. While it is possible to over provision VMs
to mitigate unpredictable response times due to interference
or workload surges, such a strategy can incur unacceptably
high costs. A cloud provider needs systematic runtime VM
provisioning techniques that can ensure response time targets
are met for a subscriber’s Web service while adhering to
constraints placed on the numbers of VMs that can be
provisioned to that service. In particular, such a technique
should be able to address the performance degradation effect
of workload surges and interference in a robust manner.

Recently, control design methods based on the Model
Predictive Control (MPC) concept [7] have found wide
acceptance in industrial applications and academia owing to
its capability of designing high performance control systems
that can operate without expert intervention for long periods
of time. MPC refers to an algorithm that utilizes an explicit
process model to predict the future response of a given plant.
It optimizes the output response of a plant over a finite
horizon in an iterative manner based on a set of constraints
and a given cost function. In the current context, MPC
which is based on an optimization formulation, lends itself
well to expressing multiple constraints related to response
time performance and the number of VMs available for
provisioning. MPC has also been shown to generate highly
accurate control decisions in response to sudden external
disturbances to the plant [11]. These factors motivate us to
study the use of MPC for VM scaling in the cloud.

This paper describes how the idea of MPC can be applied
for performance assurance of cloud-based Web services.
Specifically, an empirical dynamical model for the cloud
computing system is identified from test data. The model
describes the relationship of a Web service’s response time
to the CPU utilization of the PM hosting the service, the
workload, and the number of VMs assigned to the service.
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Since the PM CPU utilization depends on both workload
surges and interference, the model captures the impact of
these two characteristics on response time. The output of
MPC provides the optimal, i.e., sufficient, number of VM
instances to be provisioned for the incoming workload as
well as interference so that the mean response time is always
below a predefined value.

We use a realistic benchmark Web service system, RUBiS
[4], deployed on our cloud testbed, to validate our approach.
We present results that provide insights on how the length of
the future horizon over which MPC performs its optimization
impacts controller performance. We also show that our
approach is able to handle workload surges and interference
while adhering to operator specified constraints for mean
response time and number of VMs. To the best of our
knowledge, we are not aware of other studies which have
used MPC for VM scaling in an environment characterized
by interference and constraints on the number of VMs.

II. RELATED WORK

The traditional non-control theory approach for similar
kinds of problems includes the use of queuing theory. The
papers [12], [5] and [22] uses a queuing model which
determines the amount of resources to be allocated. While
these techniques can be effective, the kinds of models used
in these studies are not meant to capture a system’s transient
behaviour over fine timescales.

Control theory offers a formal mechanism to manage the
performance of a system by considering its dynamics at fine
timescales. Several studies use classical control approaches
such as PID control [8], [26]. Since vertical scaling may
not be feasible in many cloud platforms, we focus on the
more common approach of horizontal scaling, i.e., scaling
by adding more VMs to a service. Furthermore, unlike this
study, we explicitly consider the impact of interference,
which is common in cloud platforms.

Beyond traditional PID controllers, others have applied
more advanced control theoretic techniques for systems
performance management. For example, several studies [17],
[25] use fuzzy control for vertical scaling, some have used
gain scheduling control [18], and minimum variance control
[8]. While these techniques have been shown to be effective,
they focus on vertical scaling, do not consider interference,
and require considerable domain expertise to construct the
underlying system models. In our earlier work [21], we
used fuzzy control for horizontal scaling of virtualized Web
services. However, that work did not consider interference
and only used microbenchmark workloads in contrast to the
more realistic RUBiS system evaluated in this paper.

Optimal control strategies [13] are a natural fit to the
problem we are studying since they allow cost functions
and constraints to be accommodated in an explicit manner.
Nathuji et al. [15] propose a solution that combines a
linear control theoretic model with an optimizer. The model
captures the impact of VM resource configurations on VM
response times. Similar to our work, this work leverages opti-
mization and considers the impact of interference. However,

unlike our work, it focuses on vertical scaling. Furthermore,
it only focuses on optimizing the system’s control over a
single sampling period into the future. We show in Section
VI that MPC’s ability to optimize over multiple sampling
periods can be advantageous.

Wang et al. [24] apply MPC, for vertical scaling of cloud
services. They implement an MPC controller that employs
a fuzzy model in combination with a genetic algorithm
based optimizer. While this controller performs significantly
good, the authors note that the control actions cannot be
performed too frequently due to the overhead of the non-
linear optimization. In contrast to this work, we focus on
horizontal scaling and consider interference. Furthermore,
due to our use of a linear model, our approach can enable
more agile control decisions.

III. PROBLEM FORMULATION

A. Model of Target System

A state-space model, which describes the complete evo-
lution of the system over time, is constructed first. The
states of the system are the mean physical core utilization
over all VMs denoted as CPU(k), where k is the sampling
instant, and the mean request response time over all VMs
denoted by RES(k). These are represented by a state vector
x(k) = [CPU(k) RES(k)]>. They are selected since they can
reflect the impact of workload fluctuations and interference.
The exogenous input, i.e., disturbance, for our model is the
request rate encountered by the Web service w(k) measured
in requests per second. The control input is the number
of virtual machines active in the system denoted by u(k).
The output y(k) which we will be interested in is the mean
response time over all VMs. As the behavior of response
time is stochastic and non-linear in nature, but for modeling
we have linearly approximated it at higher workload region
which proves to be an good approximation as it can be
inferred from validation plot provided in Section V-A.

The target system dynamics in state space form is given
as follows:

x(k+1) =
[

a11 a12
a21 a22

]
x(k)+

[
b11
b21

]
u(k)+

[
e11
e21

]
w(k)

y(k) =
[
0 1

]
x(k)

(1)

In Equation 1, the matrices that weight the state, input, and
exogenous input are denoted by A, B, and E, respectively. All
entries of these matrices, i.e., ai j, bi j and ei j; i, j ∈ {1,2},
are to be identified using linear regression as explained in
Section V-A.

Model Assumptions: The proposed state space model is de-
veloped with the following assumptions and considerations:
• We consider CPU bound workloads and interference

for this study. Accordingly, we monitor and collect the
mean PM per-core utilization imposed by each VM.

• We are interested in accurately capturing system dy-
namics in the operating regions corresponding to high
physical core utilizations, i.e., 40% to 90%. This is
because response time violations are significant in these
regions.
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• There exists a threshold for the rate of incoming re-
quests above which requests cannot be served by our
system using the maximum number of VMs specified.
The incoming request rate is never allowed to go beyond
this threshold to avoid system saturation and failure due
to overload.

B. The Control Problem

As mentioned previously, the control objective is to guar-
antee mean response time below a certain threshold by
utilizing a minimum number of VMs. Also, there is a
constraint on the maximum number of VMs for serving
requests. We explore MPC due to its ability to accommodate
such constraints.

The optimal control problem of MPC in a discrete time
system [6] is defined as follows:

min
u

f (x,u) =
Np−1

∑
i=0

[
(xi− xre f ,i)

T Qx(xi− xre f ,i)

+(ui−ure f ,i)
T Qu(ui−ure f ,i)

]
+(xNp − xre f ,Np)

T S(xNp − xre f ,Np)

(2)

subject to
umin ≤ ui ≤ umax

ymin ≤Cxi ≤ ymax
(3)

In Equation 2, x0 is 1 the initial state value at sample 0
and is known, i.e., measured, xi is predicted state at the ith

sample, xre f ,i is reference value of the state at the ith sample,
ui is the control input at the ith state, ure f ,i is reference
value of the control input at the ith state, xNp is the terminal
state, i.e., the predicted value of states at the last sample
instant of the prediction horizon, and xre f ,NP is the reference
value of the terminal state. Qx, Qu, S are weighting matrices
for states, control inputs and terminal state, respectively. As
shown in Equation 3, constraints are placed on the maximum
and minimum values of the input, i.e., number of VMs, and
the output, i.e., mean response time. In Equation 3, C is the
output matrix that maps the state variables to the output. As
shown in Equation 1, due to our choice of state variables
and output, the value of this matrix is

[
0 1

]
.

The xre f ,i, ure f ,i, and xre f ,Np values in Equation 2 are tun-
able parameters that influence the trajectory of the controller.
The extent of influence of these parameters can be controlled
through their corresponding weighting matrices. In our study,
we are interested in regulating only the output state, i.e.,
the mean response time. Consequently, the state weight is
given by Qx=CT QyC. The terminal state weight is obtained
by solving steady state Riccati equation. In this work, the
reference values for the output state and terminal state are
set to be the desired response time target. To allow some
flexibility with respect to the optimization, ymax in Equation
3 is set to be slightly above this reference value. In essence,
one can consider the reference value to be a soft limit and
ymax to be a hard limit on mean response time.

1The discrete time sample is indicated as a subscript for the sake of
clarity.
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Fig. 1. Experimental setup

IV. EXPERIMENTAL SETUP

Figure 1 shows the experimental setup of the system.
The server (host) machine is used to host the Web service
VMs. It has 32 GB of physical memory and has 2 sockets
with each socket containing 4 cores clocked at 3.2 GHz.
We use the VirtualBox [3] virtualization software (version
5.1.6 Ubuntur110634) on this machine to create and manage
the VMs. In our experiments, we execute up to 3 VMs on
each socket resulting in a maximum of 6 VMs. Each VM
is allocated one physical core and 2 GB of memory. Each
VM instance hosts RUBiS [4], a Web service that emulates
a system where users can bid and buy items. RUBiS is
deployed on the Apache Web server. The server machine
also executes the HAproxy [1] load balancer, which uses a
round robin policy to distribute incoming requests equally
among the VMs active in the system. To facilitate control,
we sample the mean physical processor per-core utilizations
of each of the VMs every 2 seconds, i.e., the sampling period.

The client machine has 16 GB of physical memory and
4 cores clocked at 3.2 GHz. This machine executes the
httperf [9] workload generator, which submits a synthetic
workload to the RUBiS VMs hosted on the server. We focus
on the default RUBiS browsing mix workload for this study.
We use the instrumentation provided by httperf to record
mean response times for the RUBiS transactions over each
sampling period.

A third machine is used as controller in which MATLAB
[2] is used to implement MPC. This machine receives the
mean response time from the client machine and the mean
core utilization from the server machine. These are in turn
provided as inputs to the controller. All three machines
are connected to each other using a dedicated 1 Gbps fast
Ethernet switch. For one of our experiments, we emulate
performance interference on the server machine by executing
background ”noise” processes that consume the machine’s
processor cores. Specifically, we execute a lighttpd Web
server on each VM to emulate interference. The lighttpd
server hosts a PHP script. Every time the script is invoked
by a HTTP request, it consumes a CPU service time that
is exponentially distributed with a mean of 0.02 seconds.
We can control the mean CPU consumption of the lighttpd
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Fig. 2. Validation plot on test data.

server, and hence the degree of performance interference
experienced by the RUBiS VMs, by controlling the rate at
which the script is invoked. To prevent the background noise
from completely depriving the RUBiS VMs of resources, we
bound the maximum mean per-core utilization of the lighttpd
server to 60%.

V. MPC CONTROLLER

A. System Identification

We leverage standard techniques proposed in literature
[16] to identify the system model. Specifically, to cover
a large space of the control input we have followed two
approaches. First, the number of VM instances is varied in a
sinusoidal manner while RUBiS is subjected to a randomly
chosen deterministic request rate. The maximum rate is
chosen so as to avoid system saturation. The amplitude of
the sine wave is selected such that it covers the range of
the possible values of the control input. Second, the request
rate is linearly increased first and then decreased. For every
request rate r, the number of VM instances V Mr is selected
randomly from the range MinV Mr to 6, where MinV Mr is the
minimum number of VMs needed to avoid system saturation
at that rate and is obtained by hit and trail method.

The state space model matrices of Equation 1 after param-
eter estimation using linear regression are as follows:

A =

[
0.7309 0.0009
1.1524 0.6761

]
B =

[
0.59
−37.18

]
E =

[
0.0008
0.0383

]
Figure 2 shows the validation plot, i.e. measured data

vs model predicted data, based on a subset of the system
identification experiments. In this figure, the red line in-
dicates model predictions whereas the blue line shows the
corresponding measurements. As shown in the figure, we
vary the request rate randomly to observe the changes in
the state variables. As mentioned previously, we focus on
building a linear model that provides accurate predictions
for higher per-core CPU utilization values. This is reflected

Fig. 3. MPC implementation scheme on the target system

in the figure since response time and utilization predictions
closely match in this operating region. In some regions, the
model overestimates response times. The overall coefficient
of variation, i.e., R2, values for utilization and response time
are 0.91 and 0.58, and the RMSE value are 5.56 and 4.07,
respectively.

B. Controller Implementation

Figure 3 shows the MPC implementation scheme on the
target system. The target system has two state variables CPU
utilization (CPU) and mean response time (RES) as well as
an exogenous input (w), as explained previously. As shown
in the figure, the values of these states and input are available
as inputs to the MPC controller at every sampling instant.

As discussed in Section III, MPC requires reference values
to be specified for defining the reference trajectory. A refer-
ence response time RES∗, i.e., set point (xre f ,i), of 10 ms is
defined for the mean response time (RES) state variable. This
value is usually decided based on Service Level Agreements
(SLA) the service operator has with end users. The controller
attempts to achieve this set point within a specified prediction
horizon. Reference values for the control input, i.e., ure f ,i,
need to be specified as well. Settings close to the maximum
number of VMs in our setup, i.e., 6, will lead to over
provisioning while settings close to 1 increase the likelihood
of set point violations. The control references are set to 3 as
a trade-off between these extremes.

Finally, we discuss the MPC constraints. We place a con-
straint that RES not exceed 15 ms. As mentioned previously,
this value is intentionally chosen to be higher than the set
point to provide the controller some flexibility in identifying
feasible solutions. To reflect our experiment setup, the MPC
optimization also constrains the number of VMs to be in the
range 1 to 6.

The tunable parameters of MPC are typically arrived at
by creating workloads similar to those used for system
identification and observing controller performance under
various settings for these parameters. Using this process, we
choose the prediction horizon Np to be 20, as discussed in
Section VI. Furthermore, following this process the settings
used for the state, control, and terminal state are Qx = 1, and,
Qu = 0.5, respectively. The value of Qs = 5 is obtained by
solving Riccati equation. Finally, as mentioned previously,
we select a sampling interval of 2 seconds.

VI. RESULTS

We first consider the choice of MPC parameters, which can
influence controller performance. While a detailed sensitivity
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analysis on these parameters cannot be discussed due to
space constraints, we investigate the impact of the prediction
horizon Np.

Figure 4 shows controller performance with three different
settings for Np , namely 4, 20, and 50. It can be observed
from the plot that the response time set point is satisfied in
each case. From the figure, at very low request rates where
the model yields pessimistic predictions NP = 4 and Np = 20
causes the controller to use slightly more VMs than actually
required. In contrast, Np = 50 is less sensitive suggesting that
a longer prediction horizon is robust to model inaccuracies.
A different behavior can be observed when the system enters
the operating region where the model is more accurate, i.e., a
request rate greater than 2200. From the figure, in this region
Np = 50 uses slightly more number of VMs than Np = 20.
Since we are more interested in this region, we use Np = 20
in our experiments.

The time to compute the control decision is also a key
factor in selecting the prediction horizon. The computation
time with Np = 20 is approximately 0.45 seconds, which is
acceptable given our system dynamics. The computation time
can become prohibitively high with very large prediction
horizons. For example, the computation time with Np = 200
is only 0.67 seconds. However, it increases to 7.70 seconds
with Np = 1000.

Figure 6 studies the ability of the controller to track the
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Fig. 7. Impact of interference

set point when the Web service is subjected to more frequent
and unpredictable workload fluctuations than that shown in
Figure 4. From the figure, the controller is able to handle
fluctuations in the request rate by modulating the number of
VMs used. The controller guarantees that the response time
never go beyond the threshold value of 10 ms. We note that
the controller allocates just the right number of additional
VMs to achieve this effect instead of over provisioning. Such
a strategy is cost effective for systems that bill for VM usage
at fine timescales, e.g., the charge per minute of usage policy
of Google compute engine.

We now explore the robustness of the MPC technique to
interference. As described previously, we emulate perfor-
mance interference by executing background lighttpd pro-
cesses that steal processor resources from the RUBiS VMs.
Figure 5 shows the effect of this background noise on RUBiS
response time. In this experiment the noise is increased by
linearly increasing the request rate to the lighttpd servers
while the workload to RUBiS is kept constant. From the
figure, it can be observed that the response time of RUBiS
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increases significantly beyond 4000 requests per second of
lighttpd traffic.

To study controller behavior under both workload fluctu-
ations and interference, both the request rate to the RUBiS
VMs and its associated lighttpd background noise process
are varied randomly. From Figure 7, the response time of
the RUBiS VMs increases whenever the combined impact
of the RUBiS and lighttpd workloads drives the per-core
CPU utilization to very high values. However, the MPC
technique is remarkably robust to interference. It is clear
from Figure 7 that the set point of 10 ms is violated
during periods of considerable interference. However, the
controller still makes sure that the mean response time never
exceeds the 15 ms hard limit constraint. We note that our
system identification did not explicitly capture the impact of
interference. However, it is captured implicitly by the model
since both the RUBiS VM and the background noise stress
the same resource, i.e., the PM’s processor cores. However,
in a situation when MPC fails to provide a feasible solution
due to the constraints, the maximum control input must
be implemented so that the response time is satisfied. But,
during experimentation we have not encountered this issue.

VII. CONCLUSIONS

This paper investigates the use of MPC to guarantee the
performance of a cloud-based Web service. We explore MPC
since it can easily accommodate constraints regarding service
response time targets and the number of VMs available
to the service. To realize a controller that uses MPC, we
first build a linear model to capture service dynamics in
an operating region, i.e., per-core CPU utilization range, of
interest. We construct a controller that uses this model within
an optimization formulation to determine the number of VMs
to assign to the service at any given sampling instant to
satisfy a specified mean response time constraint. Results
show that, with the right choice of prediction horizon, MPC
is robust to model inaccuracies. They also show that the
controller is effective over a wide range of request rates.
Furthermore, the controller is robust even in presence of
considerable performance interference in the cloud platform.

Future work will consider other constraints. For example,
in some environments such as EC2 it might be beneficial to
not relinquish VMs immediately since VMs are billed on an
hourly or minute basis. Furthermore, many cloud platforms
will have VM activation delays and overheads, which need
to be considered while making scaling decisions. We will
also consider scenarios where there could be performance
interference for multiple PM resources. Finally, we will
explore MPC controllers that can be deployed by a cloud
subscriber. This is a challenging problem since a cloud
subscriber cannot access metrics that capture the usage of
system resources by competing VMs.
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